Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
2 |
1
|
neii |
⊢ ¬ 1 = 0 |
3 |
|
eqeq1 |
⊢ ( 1 = ( 𝐴 mod 𝑃 ) → ( 1 = 0 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
4 |
3
|
eqcoms |
⊢ ( ( 𝐴 mod 𝑃 ) = 1 → ( 1 = 0 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
5 |
2 4
|
mtbii |
⊢ ( ( 𝐴 mod 𝑃 ) = 1 → ¬ ( 𝐴 mod 𝑃 ) = 0 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑃 ) = 1 → ¬ ( 𝐴 mod 𝑃 ) = 0 ) ) |
7 |
|
modprm1div |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑃 ) = 1 ↔ 𝑃 ∥ ( 𝐴 − 1 ) ) ) |
8 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
9 |
|
dvdsval3 |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ 𝐴 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ 𝐴 ↔ ( 𝐴 mod 𝑃 ) = 0 ) ) |
11 |
10
|
bicomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑃 ) = 0 ↔ 𝑃 ∥ 𝐴 ) ) |
12 |
11
|
notbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ¬ ( 𝐴 mod 𝑃 ) = 0 ↔ ¬ 𝑃 ∥ 𝐴 ) ) |
13 |
6 7 12
|
3imtr3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 − 1 ) → ¬ 𝑃 ∥ 𝐴 ) ) |