| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-1ne0 | 
							⊢ 1  ≠  0  | 
						
						
							| 2 | 
							
								1
							 | 
							neii | 
							⊢ ¬  1  =  0  | 
						
						
							| 3 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 1  =  ( 𝐴  mod  𝑃 )  →  ( 1  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqcoms | 
							⊢ ( ( 𝐴  mod  𝑃 )  =  1  →  ( 1  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							mtbii | 
							⊢ ( ( 𝐴  mod  𝑃 )  =  1  →  ¬  ( 𝐴  mod  𝑃 )  =  0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  mod  𝑃 )  =  1  →  ¬  ( 𝐴  mod  𝑃 )  =  0 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							modprm1div | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( 𝐴  −  1 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ )  | 
						
						
							| 9 | 
							
								
							 | 
							dvdsval3 | 
							⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylan | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							bicomd | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  mod  𝑃 )  =  0  ↔  𝑃  ∥  𝐴 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							notbid | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  ( 𝐴  mod  𝑃 )  =  0  ↔  ¬  𝑃  ∥  𝐴 ) )  | 
						
						
							| 13 | 
							
								6 7 12
							 | 
							3imtr3d | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝐴  −  1 )  →  ¬  𝑃  ∥  𝐴 ) )  |