| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | divides | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ·  2 )  =  𝑁 ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ·  2 )  =  𝑁 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑁  =  ( 𝑛  ·  2 )  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( 𝑛  ·  2 ) ) ) | 
						
							| 5 | 4 | eqcoms | ⊢ ( ( 𝑛  ·  2 )  =  𝑁  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( 𝑛  ·  2 ) ) ) | 
						
							| 6 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 7 |  | 2cnd | ⊢ ( 𝑛  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 8 | 6 7 | mulcomd | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  ·  2 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( 𝑛  ·  2 ) )  =  ( - 1 ↑ ( 2  ·  𝑛 ) ) ) | 
						
							| 10 |  | m1expeven | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑛 ) )  =  1 ) | 
						
							| 11 | 9 10 | eqtrd | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( 𝑛  ·  2 ) )  =  1 ) | 
						
							| 12 | 5 11 | sylan9eqr | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( 𝑛  ·  2 )  =  𝑁 )  →  ( - 1 ↑ 𝑁 )  =  1 ) | 
						
							| 13 | 12 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ℤ ( 𝑛  ·  2 )  =  𝑁  →  ( - 1 ↑ 𝑁 )  =  1 ) | 
						
							| 14 | 3 13 | biimtrdi | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ∥  𝑁  →  ( - 1 ↑ 𝑁 )  =  1 ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( 2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ( - 1 ↑ 𝑁 )  =  1 ) | 
						
							| 16 |  | simpl | ⊢ ( ( 2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  2  ∥  𝑁 ) | 
						
							| 17 | 15 16 | 2thd | ⊢ ( ( 2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ( ( - 1 ↑ 𝑁 )  =  1  ↔  2  ∥  𝑁 ) ) | 
						
							| 18 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 19 |  | eqcom | ⊢ ( - 1  =  1  ↔  1  =  - 1 ) | 
						
							| 20 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 21 | 20 | eqnegi | ⊢ ( 1  =  - 1  ↔  1  =  0 ) | 
						
							| 22 | 19 21 | bitri | ⊢ ( - 1  =  1  ↔  1  =  0 ) | 
						
							| 23 | 18 22 | nemtbir | ⊢ ¬  - 1  =  1 | 
						
							| 24 |  | odd2np1 | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑁  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 26 | 25 | eqcoms | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 27 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 28 | 27 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  - 1  ∈  ℂ ) | 
						
							| 29 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  - 1  ≠  0 ) | 
						
							| 31 | 1 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  2  ∈  ℤ ) | 
						
							| 32 |  | id | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℤ ) | 
						
							| 33 | 31 32 | zmulcld | ⊢ ( 𝑛  ∈  ℤ  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 34 | 28 30 33 | expp1zd | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( - 1 ↑ ( 2  ·  𝑛 ) )  ·  - 1 ) ) | 
						
							| 35 | 10 | oveq1d | ⊢ ( 𝑛  ∈  ℤ  →  ( ( - 1 ↑ ( 2  ·  𝑛 ) )  ·  - 1 )  =  ( 1  ·  - 1 ) ) | 
						
							| 36 | 27 | mullidi | ⊢ ( 1  ·  - 1 )  =  - 1 | 
						
							| 37 | 35 36 | eqtrdi | ⊢ ( 𝑛  ∈  ℤ  →  ( ( - 1 ↑ ( 2  ·  𝑛 ) )  ·  - 1 )  =  - 1 ) | 
						
							| 38 | 34 37 | eqtrd | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  - 1 ) | 
						
							| 39 | 26 38 | sylan9eqr | ⊢ ( ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  →  ( - 1 ↑ 𝑁 )  =  - 1 ) | 
						
							| 40 | 39 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( - 1 ↑ 𝑁 )  =  - 1 ) | 
						
							| 41 | 24 40 | biimtrdi | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  →  ( - 1 ↑ 𝑁 )  =  - 1 ) ) | 
						
							| 42 | 41 | impcom | ⊢ ( ( ¬  2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ( - 1 ↑ 𝑁 )  =  - 1 ) | 
						
							| 43 | 42 | eqeq1d | ⊢ ( ( ¬  2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ( ( - 1 ↑ 𝑁 )  =  1  ↔  - 1  =  1 ) ) | 
						
							| 44 | 23 43 | mtbiri | ⊢ ( ( ¬  2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ¬  ( - 1 ↑ 𝑁 )  =  1 ) | 
						
							| 45 |  | simpl | ⊢ ( ( ¬  2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ¬  2  ∥  𝑁 ) | 
						
							| 46 | 44 45 | 2falsed | ⊢ ( ( ¬  2  ∥  𝑁  ∧  𝑁  ∈  ℤ )  →  ( ( - 1 ↑ 𝑁 )  =  1  ↔  2  ∥  𝑁 ) ) | 
						
							| 47 | 17 46 | pm2.61ian | ⊢ ( 𝑁  ∈  ℤ  →  ( ( - 1 ↑ 𝑁 )  =  1  ↔  2  ∥  𝑁 ) ) |