Metamath Proof Explorer


Theorem m1expcl

Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion m1expcl ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 neg1z - 1 ∈ ℤ
2 1z 1 ∈ ℤ
3 prssi ( ( - 1 ∈ ℤ ∧ 1 ∈ ℤ ) → { - 1 , 1 } ⊆ ℤ )
4 1 2 3 mp2an { - 1 , 1 } ⊆ ℤ
5 m1expcl2 ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } )
6 4 5 sselid ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ ℤ )