| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negex |
⊢ - 1 ∈ V |
| 2 |
1
|
prid1 |
⊢ - 1 ∈ { - 1 , 1 } |
| 3 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 6 |
|
prssi |
⊢ ( ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ) → { - 1 , 1 } ⊆ ℂ ) |
| 7 |
4 5 6
|
mp2an |
⊢ { - 1 , 1 } ⊆ ℂ |
| 8 |
|
elpri |
⊢ ( 𝑥 ∈ { - 1 , 1 } → ( 𝑥 = - 1 ∨ 𝑥 = 1 ) ) |
| 9 |
7
|
sseli |
⊢ ( 𝑦 ∈ { - 1 , 1 } → 𝑦 ∈ ℂ ) |
| 10 |
9
|
mulm1d |
⊢ ( 𝑦 ∈ { - 1 , 1 } → ( - 1 · 𝑦 ) = - 𝑦 ) |
| 11 |
|
elpri |
⊢ ( 𝑦 ∈ { - 1 , 1 } → ( 𝑦 = - 1 ∨ 𝑦 = 1 ) ) |
| 12 |
|
negeq |
⊢ ( 𝑦 = - 1 → - 𝑦 = - - 1 ) |
| 13 |
|
negneg1e1 |
⊢ - - 1 = 1 |
| 14 |
|
1ex |
⊢ 1 ∈ V |
| 15 |
14
|
prid2 |
⊢ 1 ∈ { - 1 , 1 } |
| 16 |
13 15
|
eqeltri |
⊢ - - 1 ∈ { - 1 , 1 } |
| 17 |
12 16
|
eqeltrdi |
⊢ ( 𝑦 = - 1 → - 𝑦 ∈ { - 1 , 1 } ) |
| 18 |
|
negeq |
⊢ ( 𝑦 = 1 → - 𝑦 = - 1 ) |
| 19 |
18 2
|
eqeltrdi |
⊢ ( 𝑦 = 1 → - 𝑦 ∈ { - 1 , 1 } ) |
| 20 |
17 19
|
jaoi |
⊢ ( ( 𝑦 = - 1 ∨ 𝑦 = 1 ) → - 𝑦 ∈ { - 1 , 1 } ) |
| 21 |
11 20
|
syl |
⊢ ( 𝑦 ∈ { - 1 , 1 } → - 𝑦 ∈ { - 1 , 1 } ) |
| 22 |
10 21
|
eqeltrd |
⊢ ( 𝑦 ∈ { - 1 , 1 } → ( - 1 · 𝑦 ) ∈ { - 1 , 1 } ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = - 1 → ( 𝑥 · 𝑦 ) = ( - 1 · 𝑦 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑥 = - 1 → ( ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ↔ ( - 1 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 25 |
22 24
|
imbitrrid |
⊢ ( 𝑥 = - 1 → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 26 |
9
|
mullidd |
⊢ ( 𝑦 ∈ { - 1 , 1 } → ( 1 · 𝑦 ) = 𝑦 ) |
| 27 |
|
id |
⊢ ( 𝑦 ∈ { - 1 , 1 } → 𝑦 ∈ { - 1 , 1 } ) |
| 28 |
26 27
|
eqeltrd |
⊢ ( 𝑦 ∈ { - 1 , 1 } → ( 1 · 𝑦 ) ∈ { - 1 , 1 } ) |
| 29 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑦 ) = ( 1 · 𝑦 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ↔ ( 1 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 31 |
28 30
|
imbitrrid |
⊢ ( 𝑥 = 1 → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 32 |
25 31
|
jaoi |
⊢ ( ( 𝑥 = - 1 ∨ 𝑥 = 1 ) → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 33 |
8 32
|
syl |
⊢ ( 𝑥 ∈ { - 1 , 1 } → ( 𝑦 ∈ { - 1 , 1 } → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) ) |
| 34 |
33
|
imp |
⊢ ( ( 𝑥 ∈ { - 1 , 1 } ∧ 𝑦 ∈ { - 1 , 1 } ) → ( 𝑥 · 𝑦 ) ∈ { - 1 , 1 } ) |
| 35 |
|
oveq2 |
⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) = ( 1 / - 1 ) ) |
| 36 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 37 |
|
divneg2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → - ( 1 / 1 ) = ( 1 / - 1 ) ) |
| 38 |
5 5 36 37
|
mp3an |
⊢ - ( 1 / 1 ) = ( 1 / - 1 ) |
| 39 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 40 |
39
|
negeqi |
⊢ - ( 1 / 1 ) = - 1 |
| 41 |
38 40
|
eqtr3i |
⊢ ( 1 / - 1 ) = - 1 |
| 42 |
41 2
|
eqeltri |
⊢ ( 1 / - 1 ) ∈ { - 1 , 1 } |
| 43 |
35 42
|
eqeltrdi |
⊢ ( 𝑥 = - 1 → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 44 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) = ( 1 / 1 ) ) |
| 45 |
39 15
|
eqeltri |
⊢ ( 1 / 1 ) ∈ { - 1 , 1 } |
| 46 |
44 45
|
eqeltrdi |
⊢ ( 𝑥 = 1 → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 47 |
43 46
|
jaoi |
⊢ ( ( 𝑥 = - 1 ∨ 𝑥 = 1 ) → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 48 |
8 47
|
syl |
⊢ ( 𝑥 ∈ { - 1 , 1 } → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝑥 ∈ { - 1 , 1 } ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ { - 1 , 1 } ) |
| 50 |
7 34 15 49
|
expcl2lem |
⊢ ( ( - 1 ∈ { - 1 , 1 } ∧ - 1 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) |
| 51 |
2 3 50
|
mp3an12 |
⊢ ( 𝑁 ∈ ℤ → ( - 1 ↑ 𝑁 ) ∈ { - 1 , 1 } ) |