| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 2 | 1 | 2timesd | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  ( - 1 ↑ ( 𝑁  +  𝑁 ) ) ) | 
						
							| 4 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 5 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 6 |  | expaddz | ⊢ ( ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 7 | 4 5 6 | mpanl12 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 8 | 7 | anidms | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 9 |  | m1expcl2 | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1 ↑ 𝑁 )  ∈  { - 1 ,  1 } ) | 
						
							| 10 |  | ovex | ⊢ ( - 1 ↑ 𝑁 )  ∈  V | 
						
							| 11 | 10 | elpr | ⊢ ( ( - 1 ↑ 𝑁 )  ∈  { - 1 ,  1 }  ↔  ( ( - 1 ↑ 𝑁 )  =  - 1  ∨  ( - 1 ↑ 𝑁 )  =  1 ) ) | 
						
							| 12 |  | oveq12 | ⊢ ( ( ( - 1 ↑ 𝑁 )  =  - 1  ∧  ( - 1 ↑ 𝑁 )  =  - 1 )  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  ( - 1  ·  - 1 ) ) | 
						
							| 13 | 12 | anidms | ⊢ ( ( - 1 ↑ 𝑁 )  =  - 1  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  ( - 1  ·  - 1 ) ) | 
						
							| 14 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( ( - 1 ↑ 𝑁 )  =  - 1  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 16 |  | oveq12 | ⊢ ( ( ( - 1 ↑ 𝑁 )  =  1  ∧  ( - 1 ↑ 𝑁 )  =  1 )  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  ( 1  ·  1 ) ) | 
						
							| 17 | 16 | anidms | ⊢ ( ( - 1 ↑ 𝑁 )  =  1  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  ( 1  ·  1 ) ) | 
						
							| 18 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( ( - 1 ↑ 𝑁 )  =  1  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 20 | 15 19 | jaoi | ⊢ ( ( ( - 1 ↑ 𝑁 )  =  - 1  ∨  ( - 1 ↑ 𝑁 )  =  1 )  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 21 | 11 20 | sylbi | ⊢ ( ( - 1 ↑ 𝑁 )  ∈  { - 1 ,  1 }  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 22 | 9 21 | syl | ⊢ ( 𝑁  ∈  ℤ  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 23 | 3 8 22 | 3eqtrd | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  1 ) |