| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑁  =  ( ( 2  ·  𝑛 )  +  1 )  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 3 | 2 | eqcoms | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( - 1 ↑ 𝑁 )  =  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 4 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  - 1  ∈  ℂ ) | 
						
							| 6 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  - 1  ≠  0 ) | 
						
							| 8 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑛  ∈  ℤ  →  2  ∈  ℤ ) | 
						
							| 10 |  | id | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℤ ) | 
						
							| 11 | 9 10 | zmulcld | ⊢ ( 𝑛  ∈  ℤ  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 12 | 5 7 11 | expp1zd | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( - 1 ↑ ( 2  ·  𝑛 ) )  ·  - 1 ) ) | 
						
							| 13 |  | m1expeven | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑛 ) )  =  1 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑛  ∈  ℤ  →  ( ( - 1 ↑ ( 2  ·  𝑛 ) )  ·  - 1 )  =  ( 1  ·  - 1 ) ) | 
						
							| 15 | 4 | mullidi | ⊢ ( 1  ·  - 1 )  =  - 1 | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( 𝑛  ∈  ℤ  →  ( ( - 1 ↑ ( 2  ·  𝑛 ) )  ·  - 1 )  =  - 1 ) | 
						
							| 17 | 12 16 | eqtrd | ⊢ ( 𝑛  ∈  ℤ  →  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  - 1 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( - 1 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  - 1 ) | 
						
							| 19 | 3 18 | sylan9eqr | ⊢ ( ( ( 𝑁  ∈  ℤ  ∧  𝑛  ∈  ℤ )  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  →  ( - 1 ↑ 𝑁 )  =  - 1 ) | 
						
							| 20 | 19 | rexlimdva2 | ⊢ ( 𝑁  ∈  ℤ  →  ( ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( - 1 ↑ 𝑁 )  =  - 1 ) ) | 
						
							| 21 | 1 20 | sylbid | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  →  ( - 1 ↑ 𝑁 )  =  - 1 ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( - 1 ↑ 𝑁 )  =  - 1 ) |