Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑁 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
3 |
2
|
eqcoms |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
5 |
4
|
a1i |
⊢ ( 𝑛 ∈ ℤ → - 1 ∈ ℂ ) |
6 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
7 |
6
|
a1i |
⊢ ( 𝑛 ∈ ℤ → - 1 ≠ 0 ) |
8 |
|
2z |
⊢ 2 ∈ ℤ |
9 |
8
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
10 |
|
id |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) |
11 |
9 10
|
zmulcld |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
12 |
5 7 11
|
expp1zd |
⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) ) |
13 |
|
m1expeven |
⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
14 |
13
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) = ( 1 · - 1 ) ) |
15 |
4
|
mulid2i |
⊢ ( 1 · - 1 ) = - 1 |
16 |
14 15
|
eqtrdi |
⊢ ( 𝑛 ∈ ℤ → ( ( - 1 ↑ ( 2 · 𝑛 ) ) · - 1 ) = - 1 ) |
17 |
12 16
|
eqtrd |
⊢ ( 𝑛 ∈ ℤ → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = - 1 ) |
18 |
17
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( - 1 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = - 1 ) |
19 |
3 18
|
sylan9eqr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |
20 |
19
|
rexlimdva2 |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( - 1 ↑ 𝑁 ) = - 1 ) ) |
21 |
1 20
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( - 1 ↑ 𝑁 ) = - 1 ) ) |
22 |
21
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |