Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
⊢ ( 𝑁 ∈ Odd → 𝑁 ∈ ℤ ) |
2 |
1
|
zcnd |
⊢ ( 𝑁 ∈ Odd → 𝑁 ∈ ℂ ) |
3 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
4 |
3
|
eqcomd |
⊢ ( 𝑁 ∈ ℂ → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝑁 ∈ Odd → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑁 ∈ Odd → ( - 1 ↑ 𝑁 ) = ( - 1 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ Odd → - 1 ∈ ℂ ) |
9 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
10 |
9
|
a1i |
⊢ ( 𝑁 ∈ Odd → - 1 ≠ 0 ) |
11 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
12 |
1 11
|
syl |
⊢ ( 𝑁 ∈ Odd → ( 𝑁 − 1 ) ∈ ℤ ) |
13 |
8 10 12
|
expp1zd |
⊢ ( 𝑁 ∈ Odd → ( - 1 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑁 − 1 ) ) · - 1 ) ) |
14 |
|
oddm1eveni |
⊢ ( 𝑁 ∈ Odd → ( 𝑁 − 1 ) ∈ Even ) |
15 |
|
m1expevenALTV |
⊢ ( ( 𝑁 − 1 ) ∈ Even → ( - 1 ↑ ( 𝑁 − 1 ) ) = 1 ) |
16 |
14 15
|
syl |
⊢ ( 𝑁 ∈ Odd → ( - 1 ↑ ( 𝑁 − 1 ) ) = 1 ) |
17 |
16
|
oveq1d |
⊢ ( 𝑁 ∈ Odd → ( ( - 1 ↑ ( 𝑁 − 1 ) ) · - 1 ) = ( 1 · - 1 ) ) |
18 |
8
|
mulid2d |
⊢ ( 𝑁 ∈ Odd → ( 1 · - 1 ) = - 1 ) |
19 |
17 18
|
eqtrd |
⊢ ( 𝑁 ∈ Odd → ( ( - 1 ↑ ( 𝑁 − 1 ) ) · - 1 ) = - 1 ) |
20 |
6 13 19
|
3eqtrd |
⊢ ( 𝑁 ∈ Odd → ( - 1 ↑ 𝑁 ) = - 1 ) |