| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-m1r |
⊢ -1R = [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R |
| 2 |
1 1
|
oveq12i |
⊢ ( -1R ·R -1R ) = ( [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ·R [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ) |
| 3 |
|
df-1r |
⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R |
| 4 |
|
1pr |
⊢ 1P ∈ P |
| 5 |
|
addclpr |
⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) |
| 6 |
4 4 5
|
mp2an |
⊢ ( 1P +P 1P ) ∈ P |
| 7 |
|
mulsrpr |
⊢ ( ( ( 1P ∈ P ∧ ( 1P +P 1P ) ∈ P ) ∧ ( 1P ∈ P ∧ ( 1P +P 1P ) ∈ P ) ) → ( [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ·R [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ) = [ 〈 ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) , ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) 〉 ] ~R ) |
| 8 |
4 6 4 6 7
|
mp4an |
⊢ ( [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ·R [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ) = [ 〈 ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) , ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) 〉 ] ~R |
| 9 |
|
addasspr |
⊢ ( ( 1P +P 1P ) +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) = ( 1P +P ( 1P +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) ) |
| 10 |
|
1idpr |
⊢ ( 1P ∈ P → ( 1P ·P 1P ) = 1P ) |
| 11 |
4 10
|
ax-mp |
⊢ ( 1P ·P 1P ) = 1P |
| 12 |
|
distrpr |
⊢ ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) = ( ( ( 1P +P 1P ) ·P 1P ) +P ( ( 1P +P 1P ) ·P 1P ) ) |
| 13 |
|
mulcompr |
⊢ ( 1P ·P ( 1P +P 1P ) ) = ( ( 1P +P 1P ) ·P 1P ) |
| 14 |
13
|
oveq1i |
⊢ ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) = ( ( ( 1P +P 1P ) ·P 1P ) +P ( ( 1P +P 1P ) ·P 1P ) ) |
| 15 |
12 14
|
eqtr4i |
⊢ ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) = ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) |
| 16 |
11 15
|
oveq12i |
⊢ ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) = ( 1P +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) |
| 17 |
16
|
oveq2i |
⊢ ( 1P +P ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ) = ( 1P +P ( 1P +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) ) |
| 18 |
9 17
|
eqtr4i |
⊢ ( ( 1P +P 1P ) +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) = ( 1P +P ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ) |
| 19 |
|
mulclpr |
⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P ·P 1P ) ∈ P ) |
| 20 |
4 4 19
|
mp2an |
⊢ ( 1P ·P 1P ) ∈ P |
| 21 |
|
mulclpr |
⊢ ( ( ( 1P +P 1P ) ∈ P ∧ ( 1P +P 1P ) ∈ P ) → ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ∈ P ) |
| 22 |
6 6 21
|
mp2an |
⊢ ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ∈ P |
| 23 |
|
addclpr |
⊢ ( ( ( 1P ·P 1P ) ∈ P ∧ ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ∈ P ) → ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ∈ P ) |
| 24 |
20 22 23
|
mp2an |
⊢ ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ∈ P |
| 25 |
|
mulclpr |
⊢ ( ( 1P ∈ P ∧ ( 1P +P 1P ) ∈ P ) → ( 1P ·P ( 1P +P 1P ) ) ∈ P ) |
| 26 |
4 6 25
|
mp2an |
⊢ ( 1P ·P ( 1P +P 1P ) ) ∈ P |
| 27 |
|
mulclpr |
⊢ ( ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) → ( ( 1P +P 1P ) ·P 1P ) ∈ P ) |
| 28 |
6 4 27
|
mp2an |
⊢ ( ( 1P +P 1P ) ·P 1P ) ∈ P |
| 29 |
|
addclpr |
⊢ ( ( ( 1P ·P ( 1P +P 1P ) ) ∈ P ∧ ( ( 1P +P 1P ) ·P 1P ) ∈ P ) → ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ∈ P ) |
| 30 |
26 28 29
|
mp2an |
⊢ ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ∈ P |
| 31 |
|
enreceq |
⊢ ( ( ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) ∧ ( ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ∈ P ∧ ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ∈ P ) ) → ( [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R = [ 〈 ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) , ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) 〉 ] ~R ↔ ( ( 1P +P 1P ) +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) = ( 1P +P ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ) ) ) |
| 32 |
6 4 24 30 31
|
mp4an |
⊢ ( [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R = [ 〈 ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) , ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) 〉 ] ~R ↔ ( ( 1P +P 1P ) +P ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) ) = ( 1P +P ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) ) ) |
| 33 |
18 32
|
mpbir |
⊢ [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R = [ 〈 ( ( 1P ·P 1P ) +P ( ( 1P +P 1P ) ·P ( 1P +P 1P ) ) ) , ( ( 1P ·P ( 1P +P 1P ) ) +P ( ( 1P +P 1P ) ·P 1P ) ) 〉 ] ~R |
| 34 |
8 33
|
eqtr4i |
⊢ ( [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ·R [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ) = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R |
| 35 |
3 34
|
eqtr4i |
⊢ 1R = ( [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ·R [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R ) |
| 36 |
2 35
|
eqtr4i |
⊢ ( -1R ·R -1R ) = 1R |