| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 2 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 3 |  | eluzle | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑀 ) | 
						
							| 4 | 2 3 | eqbrtrid | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( 2  +  1 )  ≤  𝑀 ) | 
						
							| 5 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 6 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | zltp1le | ⊢ ( ( 2  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 2  <  𝑀  ↔  ( 2  +  1 )  ≤  𝑀 ) ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( 2  <  𝑀  ↔  ( 2  +  1 )  ≤  𝑀 ) ) | 
						
							| 9 | 4 8 | mpbird | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  2  <  𝑀 ) | 
						
							| 10 | 1 9 | eqbrtrid | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( 1  +  1 )  <  𝑀 ) | 
						
							| 11 |  | 1red | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  1  ∈  ℝ ) | 
						
							| 12 |  | eluzelre | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℝ ) | 
						
							| 13 | 11 11 12 | ltaddsub2d | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( ( 1  +  1 )  <  𝑀  ↔  1  <  ( 𝑀  −  1 ) ) ) | 
						
							| 14 | 10 13 | mpbid | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  1  <  ( 𝑀  −  1 ) ) | 
						
							| 15 |  | eluzge3nn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℕ ) | 
						
							| 16 |  | m1modnnsub1 | ⊢ ( 𝑀  ∈  ℕ  →  ( - 1  mod  𝑀 )  =  ( 𝑀  −  1 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( - 1  mod  𝑀 )  =  ( 𝑀  −  1 ) ) | 
						
							| 18 | 14 17 | breqtrrd | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  1  <  ( - 1  mod  𝑀 ) ) |