| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 2 |  | m2cpm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 3 |  | m2cpm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | m2cpm.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 5 |  | eqid | ⊢ ( Poly1 ‘ 𝑅 )  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 7 | 2 3 4 5 6 | mat2pmatvalel | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 )  =  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 )  =  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) )  =  ( coe1 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) ) ‘ 𝑛 ) ) | 
						
							| 11 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 14 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 15 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 16 | 3 12 4 13 14 15 | matecld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 11 16 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 20 | 5 6 12 19 | coe1scl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  →  ( coe1 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 21 | 18 20 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( coe1 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 22 |  | eqeq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  =  0  ↔  𝑛  =  0 ) ) | 
						
							| 23 | 22 | ifbid | ⊢ ( 𝑘  =  𝑛  →  if ( 𝑘  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑛  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  if ( 𝑘  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑛  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 25 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 27 |  | ovex | ⊢ ( 𝑖 𝑀 𝑗 )  ∈  V | 
						
							| 28 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 29 | 27 28 | ifex | ⊢ if ( 𝑛  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  if ( 𝑛  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V ) | 
						
							| 31 | 21 24 26 30 | fvmptd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( coe1 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑖 𝑀 𝑗 ) ) ) ‘ 𝑛 )  =  if ( 𝑛  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 32 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 33 | 32 | neneqd | ⊢ ( 𝑛  ∈  ℕ  →  ¬  𝑛  =  0 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ¬  𝑛  =  0 ) | 
						
							| 35 | 34 | iffalsed | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  if ( 𝑛  =  0 ,  ( 𝑖 𝑀 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 36 | 10 31 35 | 3eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ∀ 𝑛  ∈  ℕ ( ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 38 | 37 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑛  ∈  ℕ ( ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 39 |  | eqid | ⊢ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) )  =  ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 40 | 2 3 4 5 39 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) )  =  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 42 | 1 5 39 41 | cpmatel | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) )  →  ( ( 𝑇 ‘ 𝑀 )  ∈  𝑆  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑛  ∈  ℕ ( ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 43 | 40 42 | syld3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑇 ‘ 𝑀 )  ∈  𝑆  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑛  ∈  ℕ ( ( coe1 ‘ ( 𝑖 ( 𝑇 ‘ 𝑀 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 44 | 38 43 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝑆 ) |