| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 2 |  | m2cpm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 3 |  | m2cpm.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 4 |  | m2cpm.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 5 |  | eqid | ⊢ ( Poly1 ‘ 𝑅 )  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) )  =  ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) )  =  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 8 | 2 3 4 5 6 7 | mat2pmatf1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –1-1→ ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) ) | 
						
							| 9 | 1 2 3 4 | m2cpmf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 ⟶ 𝑆 ) | 
						
							| 10 | 9 | frnd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ran  𝑇  ⊆  𝑆 ) | 
						
							| 11 |  | f1ssr | ⊢ ( ( 𝑇 : 𝐵 –1-1→ ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) )  ∧  ran  𝑇  ⊆  𝑆 )  →  𝑇 : 𝐵 –1-1→ 𝑆 ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –1-1→ 𝑆 ) |