| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpminv.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | m2cpminv.k | ⊢ 𝐾  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | m2cpminv.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 4 |  | m2cpminv.i | ⊢ 𝐼  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 5 |  | m2cpminv.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 | 1 2 3 4 | cpm2mf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐼 : 𝑆 ⟶ 𝐾 ) | 
						
							| 7 | 3 5 1 2 | m2cpmf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐾 ⟶ 𝑆 ) | 
						
							| 8 | 3 4 5 | m2cpminvid2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  𝑆 )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑠 ) )  =  𝑠 ) | 
						
							| 9 | 8 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑠  ∈  𝑆 )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑠 ) )  =  𝑠 ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑠  ∈  𝑆 ( 𝑇 ‘ ( 𝐼 ‘ 𝑠 ) )  =  𝑠 ) | 
						
							| 11 | 4 1 2 5 | m2cpminvid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑘  ∈  𝐾 )  →  ( 𝐼 ‘ ( 𝑇 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 12 | 11 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  𝐾 )  →  ( 𝐼 ‘ ( 𝑇 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑘  ∈  𝐾 ( 𝐼 ‘ ( 𝑇 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 14 | 6 7 10 13 | 2fvidf1od | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐼 : 𝑆 –1-1-onto→ 𝐾 ) | 
						
							| 15 | 6 7 10 13 | 2fvidinvd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ◡ 𝐼  =  𝑇 ) | 
						
							| 16 | 14 15 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐼 : 𝑆 –1-1-onto→ 𝐾  ∧  ◡ 𝐼  =  𝑇 ) ) |