| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpminv0.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | m2cpminv0.i | ⊢ 𝐼  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 3 |  | m2cpminv0.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | m2cpminv0.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | m2cpminv0.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 6 |  | m2cpminv0.z | ⊢ 𝑍  =  ( 0g ‘ 𝐶 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑁  matToPolyMat  𝑅 )  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 | 1 | fveq2i | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 9 | 5 8 | eqtri | ⊢  0   =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 10 | 4 | fveq2i | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 11 | 6 10 | eqtri | ⊢ 𝑍  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 12 | 7 3 9 11 | 0mat2pmat | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( ( 𝑁  matToPolyMat  𝑅 ) ‘  0  )  =  𝑍 ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑁  matToPolyMat  𝑅 ) ‘  0  )  =  𝑍 ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑍  =  ( ( 𝑁  matToPolyMat  𝑅 ) ‘  0  ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐼 ‘ 𝑍 )  =  ( 𝐼 ‘ ( ( 𝑁  matToPolyMat  𝑅 ) ‘  0  ) ) ) | 
						
							| 16 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 18 | 17 5 | ring0cl | ⊢ ( 𝐴  ∈  Ring  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 19 | 16 18 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 20 | 2 1 17 7 | m2cpminvid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧   0   ∈  ( Base ‘ 𝐴 ) )  →  ( 𝐼 ‘ ( ( 𝑁  matToPolyMat  𝑅 ) ‘  0  ) )  =   0  ) | 
						
							| 21 | 19 20 | mpd3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐼 ‘ ( ( 𝑁  matToPolyMat  𝑅 ) ‘  0  ) )  =   0  ) | 
						
							| 22 | 15 21 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐼 ‘ 𝑍 )  =   0  ) |