Metamath Proof Explorer


Theorem m2cpminvid2lem

Description: Lemma for m2cpminvid2 . (Contributed by AV, 12-Nov-2019) (Revised by AV, 14-Dec-2019)

Ref Expression
Hypotheses m2cpminvid2lem.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
m2cpminvid2lem.p 𝑃 = ( Poly1𝑅 )
Assertion m2cpminvid2lem ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )

Proof

Step Hyp Ref Expression
1 m2cpminvid2lem.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
2 m2cpminvid2lem.p 𝑃 = ( Poly1𝑅 )
3 eqid ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 )
4 eqid ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) )
5 1 2 3 4 cpmatelimp ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀𝑆 → ( 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) ) )
6 5 3impia ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) → ( 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
7 6 simprd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) → ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) )
8 7 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) )
9 fvoveq1 ( 𝑖 = 𝑥 → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) )
10 9 fveq1d ( 𝑖 = 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) )
11 10 eqeq1d ( 𝑖 = 𝑥 → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ↔ ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
12 11 ralbidv ( 𝑖 = 𝑥 → ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ↔ ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
13 oveq2 ( 𝑗 = 𝑦 → ( 𝑥 𝑀 𝑗 ) = ( 𝑥 𝑀 𝑦 ) )
14 13 fveq2d ( 𝑗 = 𝑦 → ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) )
15 14 fveq1d ( 𝑗 = 𝑦 → ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) )
16 15 eqeq1d ( 𝑗 = 𝑦 → ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ↔ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
17 16 ralbidv ( 𝑗 = 𝑦 → ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ↔ ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
18 12 17 rspc2v ( ( 𝑥𝑁𝑦𝑁 ) → ( ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) → ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
19 18 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) → ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ) )
20 fveqeq2 ( 𝑘 = 𝑛 → ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ↔ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) )
21 20 cbvralvw ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) )
22 simpl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → 𝑅 ∈ Ring )
23 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
24 simprl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → 𝑥𝑁 )
25 simprr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → 𝑦𝑁 )
26 1 2 3 4 cpmatpmat ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) → 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) )
27 26 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) )
28 3 23 4 24 25 27 matecld ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑃 ) )
29 0nn0 0 ∈ ℕ0
30 eqid ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) )
31 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
32 30 23 2 31 coe1fvalcl ( ( ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑃 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) )
33 28 29 32 sylancl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) )
34 22 33 jca ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) )
35 34 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) )
36 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
37 eqid ( 0g𝑅 ) = ( 0g𝑅 )
38 2 36 31 37 coe1scl ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ) )
39 35 38 syl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ) )
40 39 fveq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ) ‘ 𝑛 ) )
41 eqidd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ) )
42 eqeq1 ( 𝑙 = 𝑛 → ( 𝑙 = 0 ↔ 𝑛 = 0 ) )
43 42 ifbid ( 𝑙 = 𝑛 → if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) = if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) )
44 43 adantl ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑙 = 𝑛 ) → if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) = if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) )
45 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
46 45 adantl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 )
47 fvex ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ V
48 fvex ( 0g𝑅 ) ∈ V
49 47 48 ifex if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ∈ V
50 49 a1i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ∈ V )
51 41 44 46 50 fvmptd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) ) ‘ 𝑛 ) = if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) )
52 nnne0 ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 )
53 52 neneqd ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 )
54 53 adantl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 )
55 54 iffalsed ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g𝑅 ) ) = ( 0g𝑅 ) )
56 40 51 55 3eqtrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( 0g𝑅 ) )
57 eqcom ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ↔ ( 0g𝑅 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )
58 57 biimpi ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) → ( 0g𝑅 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )
59 56 58 sylan9eq ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )
60 59 ex ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) )
61 60 ralimdva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) )
62 61 imp ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )
63 34 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) )
64 2 36 31 ply1sclid ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) = ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) )
65 64 eqcomd ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) )
66 63 65 syl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) )
67 62 66 jca ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) )
68 67 ex ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g𝑅 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) )
69 21 68 syl5bi ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) )
70 19 69 syld ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g𝑅 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) )
71 8 70 mpd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) )
72 c0ex 0 ∈ V
73 fveq2 ( 𝑛 = 0 → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) )
74 fveq2 ( 𝑛 = 0 → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) )
75 73 74 eqeq12d ( 𝑛 = 0 → ( ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) )
76 75 ralunsn ( 0 ∈ V → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) )
77 72 76 mp1i ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) )
78 71 77 mpbird ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )
79 df-n0 0 = ( ℕ ∪ { 0 } )
80 79 raleqi ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )
81 78 80 sylibr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆 ) ∧ ( 𝑥𝑁𝑦𝑁 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) )