| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpminvid2lem.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 2 |
|
m2cpminvid2lem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) ) |
| 5 |
1 2 3 4
|
cpmatelimp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝑆 → ( 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 6 |
5
|
3impia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) → ( 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 7 |
6
|
simprd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 9 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑥 → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝑖 = 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑖 = 𝑥 → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑖 = 𝑥 → ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑗 = 𝑦 → ( 𝑥 𝑀 𝑗 ) = ( 𝑥 𝑀 𝑦 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑗 = 𝑦 → ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝑗 = 𝑦 → ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑗 = 𝑦 → ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑗 = 𝑦 → ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 18 |
12 17
|
rspc2v |
⊢ ( ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) ) |
| 20 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑛 → ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 21 |
20
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
| 22 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 24 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → 𝑥 ∈ 𝑁 ) |
| 25 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → 𝑦 ∈ 𝑁 ) |
| 26 |
1 2 3 4
|
cpmatpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) → 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → 𝑀 ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
| 28 |
3 23 4 24 25 27
|
matecld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑃 ) ) |
| 29 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 30 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 32 |
30 23 2 31
|
coe1fvalcl |
⊢ ( ( ( 𝑥 𝑀 𝑦 ) ∈ ( Base ‘ 𝑃 ) ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
28 29 32
|
sylancl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
22 33
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 36 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 37 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 38 |
2 36 31 37
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 39 |
35 38
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 40 |
39
|
fveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) ) |
| 41 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 42 |
|
eqeq1 |
⊢ ( 𝑙 = 𝑛 → ( 𝑙 = 0 ↔ 𝑛 = 0 ) ) |
| 43 |
42
|
ifbid |
⊢ ( 𝑙 = 𝑛 → if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑙 = 𝑛 ) → if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) |
| 45 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 46 |
45
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 47 |
|
fvex |
⊢ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ V |
| 48 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 49 |
47 48
|
ifex |
⊢ if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ∈ V |
| 50 |
49
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
| 51 |
41 44 46 50
|
fvmptd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) = if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) ) |
| 52 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 53 |
52
|
neneqd |
⊢ ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 ) |
| 54 |
53
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 55 |
54
|
iffalsed |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 56 |
40 51 55
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
| 57 |
|
eqcom |
⊢ ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |
| 58 |
57
|
biimpi |
⊢ ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |
| 59 |
56 58
|
sylan9eq |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |
| 60 |
59
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) ) |
| 61 |
60
|
ralimdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) ) |
| 62 |
61
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |
| 63 |
34
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 64 |
2 36 31
|
ply1sclid |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) = ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) ) |
| 65 |
64
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) |
| 66 |
63 65
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) |
| 67 |
62 66
|
jca |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) |
| 68 |
67
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ) |
| 69 |
21 68
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ) |
| 70 |
19 69
|
syld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ) |
| 71 |
8 70
|
mpd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) |
| 72 |
|
c0ex |
⊢ 0 ∈ V |
| 73 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) |
| 75 |
73 74
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) |
| 76 |
75
|
ralunsn |
⊢ ( 0 ∈ V → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ) |
| 77 |
72 76
|
mp1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ) |
| 78 |
71 77
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |
| 79 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
| 80 |
79
|
raleqi |
⊢ ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |
| 81 |
78 80
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑥 𝑀 𝑦 ) ) ‘ 𝑛 ) ) |