Metamath Proof Explorer


Theorem m2cpmrngiso

Description: The transformation of matrices into constant polynomial matrices is a ring isomorphism. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses m2cpmfo.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
m2cpmfo.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
m2cpmfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
m2cpmfo.k 𝐾 = ( Base ‘ 𝐴 )
m2cpmrngiso.p 𝑃 = ( Poly1𝑅 )
m2cpmrngiso.c 𝐶 = ( 𝑁 Mat 𝑃 )
m2cpmrngiso.u 𝑈 = ( 𝐶s 𝑆 )
Assertion m2cpmrngiso ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) )

Proof

Step Hyp Ref Expression
1 m2cpmfo.s 𝑆 = ( 𝑁 ConstPolyMat 𝑅 )
2 m2cpmfo.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
3 m2cpmfo.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 m2cpmfo.k 𝐾 = ( Base ‘ 𝐴 )
5 m2cpmrngiso.p 𝑃 = ( Poly1𝑅 )
6 m2cpmrngiso.c 𝐶 = ( 𝑁 Mat 𝑃 )
7 m2cpmrngiso.u 𝑈 = ( 𝐶s 𝑆 )
8 1 2 3 4 5 6 7 m2cpmrhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) )
9 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
10 1 2 3 4 m2cpmf1o ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾1-1-onto𝑆 )
11 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
12 1 5 6 11 cpmatpmat ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝑆 ) → 𝑚 ∈ ( Base ‘ 𝐶 ) )
13 12 3expia ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑚𝑆𝑚 ∈ ( Base ‘ 𝐶 ) ) )
14 13 ssrdv ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) )
15 7 11 ressbas2 ( 𝑆 ⊆ ( Base ‘ 𝐶 ) → 𝑆 = ( Base ‘ 𝑈 ) )
16 14 15 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = ( Base ‘ 𝑈 ) )
17 16 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑈 ) = 𝑆 )
18 17 f1oeq3d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 : 𝐾1-1-onto→ ( Base ‘ 𝑈 ) ↔ 𝑇 : 𝐾1-1-onto𝑆 ) )
19 10 18 mpbird ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾1-1-onto→ ( Base ‘ 𝑈 ) )
20 9 19 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 : 𝐾1-1-onto→ ( Base ‘ 𝑈 ) )
21 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
22 4 21 isrim ( 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ↔ ( 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ∧ 𝑇 : 𝐾1-1-onto→ ( Base ‘ 𝑈 ) ) )
23 8 20 22 sylanbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) )