Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpmfo.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
2 |
|
m2cpmfo.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
3 |
|
m2cpmfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
m2cpmfo.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
5 |
|
m2cpmrngiso.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
6 |
|
m2cpmrngiso.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
7 |
|
m2cpmrngiso.u |
⊢ 𝑈 = ( 𝐶 ↾s 𝑆 ) |
8 |
1 2 3 4 5 6 7
|
m2cpmrhm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
1 2 3 4
|
m2cpmf1o |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
12 |
1 5 6 11
|
cpmatpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆 ) → 𝑚 ∈ ( Base ‘ 𝐶 ) ) |
13 |
12
|
3expia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑚 ∈ 𝑆 → 𝑚 ∈ ( Base ‘ 𝐶 ) ) ) |
14 |
13
|
ssrdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
15 |
7 11
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑈 ) = 𝑆 ) |
18 |
17
|
f1oeq3d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ↔ 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) ) |
19 |
10 18
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
20 |
9 19
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
22 |
4 21
|
isrim |
⊢ ( 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ↔ ( 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ∧ 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) ) |
23 |
8 20 22
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ) |