Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpmfo.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
2 |
|
m2cpmfo.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
3 |
|
m2cpmfo.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
4 |
|
m2cpmfo.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
5 |
|
m2cpmrngiso.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
6 |
|
m2cpmrngiso.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
7 |
|
m2cpmrngiso.u |
⊢ 𝑈 = ( 𝐶 ↾s 𝑆 ) |
8 |
1 2 3 4 5 6 7
|
m2cpmrhm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
9
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
11 |
1 2 3 4
|
m2cpmf1o |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
13 |
1 5 6 12
|
cpmatpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝑆 ) → 𝑚 ∈ ( Base ‘ 𝐶 ) ) |
14 |
13
|
3expia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑚 ∈ 𝑆 → 𝑚 ∈ ( Base ‘ 𝐶 ) ) ) |
15 |
14
|
ssrdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
16 |
7 12
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
18 |
17
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑈 ) = 𝑆 ) |
19 |
18
|
f1oeq3d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ↔ 𝑇 : 𝐾 –1-1-onto→ 𝑆 ) ) |
20 |
11 19
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
21 |
10 20
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) |
22 |
3
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
23 |
10 22
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
24 |
1 5 6
|
cpmatsubgpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ) |
25 |
7
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) → 𝑈 ∈ Grp ) |
26 |
10 24 25
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ Grp ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
28 |
4 27
|
isrim |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑈 ∈ Grp ) → ( 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ↔ ( 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ∧ 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) ) ) |
29 |
23 26 28
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ↔ ( 𝑇 ∈ ( 𝐴 RingHom 𝑈 ) ∧ 𝑇 : 𝐾 –1-1-onto→ ( Base ‘ 𝑈 ) ) ) ) |
30 |
8 21 29
|
mpbir2and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingIso 𝑈 ) ) |