Metamath Proof Explorer


Theorem m2even

Description: A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion m2even ( 𝑍 ∈ ℤ → ( 2 · 𝑍 ) ∈ Even )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 1 a1i ( 𝑍 ∈ ℤ → 2 ∈ ℤ )
3 id ( 𝑍 ∈ ℤ → 𝑍 ∈ ℤ )
4 2 3 zmulcld ( 𝑍 ∈ ℤ → ( 2 · 𝑍 ) ∈ ℤ )
5 dvdsmul1 ( ( 2 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → 2 ∥ ( 2 · 𝑍 ) )
6 1 5 mpan ( 𝑍 ∈ ℤ → 2 ∥ ( 2 · 𝑍 ) )
7 iseven2 ( ( 2 · 𝑍 ) ∈ Even ↔ ( ( 2 · 𝑍 ) ∈ ℤ ∧ 2 ∥ ( 2 · 𝑍 ) ) )
8 4 6 7 sylanbrc ( 𝑍 ∈ ℤ → ( 2 · 𝑍 ) ∈ Even )