Step |
Hyp |
Ref |
Expression |
1 |
|
madufval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
madufval.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
3 |
|
madufval.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
4 |
|
madufval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
5 |
|
madufval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
madufval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
7 |
1 2 3 4 5 6
|
maduval |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝐽 ‘ 𝑀 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐽 ‘ 𝑀 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
9 |
|
simp1r |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑗 = 𝐻 ) |
10 |
9
|
eqeq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 = 𝑗 ↔ 𝑘 = 𝐻 ) ) |
11 |
|
simp1l |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑖 = 𝐼 ) |
12 |
11
|
eqeq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑙 = 𝑖 ↔ 𝑙 = 𝐼 ) ) |
13 |
12
|
ifbid |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝑖 , 1 , 0 ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
14 |
10 13
|
ifbieq1d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
15 |
14
|
mpoeq3dva |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐻 ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
18 |
|
simp2 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → 𝐼 ∈ 𝑁 ) |
19 |
|
simp3 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → 𝐻 ∈ 𝑁 ) |
20 |
|
fvexd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ∈ V ) |
21 |
8 17 18 19 20
|
ovmpod |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |