Step |
Hyp |
Ref |
Expression |
1 |
|
madufval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
madufval.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
3 |
|
madufval.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
4 |
|
madufval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
5 |
|
madufval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
madufval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
7 |
|
eleq2 |
⊢ ( 𝑚 = ∅ → ( 𝑘 ∈ 𝑚 ↔ 𝑘 ∈ ∅ ) ) |
8 |
7
|
ifbid |
⊢ ( 𝑚 = ∅ → if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
9 |
8
|
ifeq2d |
⊢ ( 𝑚 = ∅ → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
10 |
9
|
mpoeq3dv |
⊢ ( 𝑚 = ∅ → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑚 = ∅ → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑚 = ∅ → ( ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ↔ ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
13 |
|
eleq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑘 ∈ 𝑚 ↔ 𝑘 ∈ 𝑛 ) ) |
14 |
13
|
ifbid |
⊢ ( 𝑚 = 𝑛 → if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
15 |
14
|
ifeq2d |
⊢ ( 𝑚 = 𝑛 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
16 |
15
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ↔ ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
19 |
|
eleq2 |
⊢ ( 𝑚 = ( 𝑛 ∪ { 𝑟 } ) → ( 𝑘 ∈ 𝑚 ↔ 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) ) ) |
20 |
19
|
ifbid |
⊢ ( 𝑚 = ( 𝑛 ∪ { 𝑟 } ) → if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
21 |
20
|
ifeq2d |
⊢ ( 𝑚 = ( 𝑛 ∪ { 𝑟 } ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
22 |
21
|
mpoeq3dv |
⊢ ( 𝑚 = ( 𝑛 ∪ { 𝑟 } ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑚 = ( 𝑛 ∪ { 𝑟 } ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑛 ∪ { 𝑟 } ) → ( ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ↔ ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
25 |
|
eleq2 |
⊢ ( 𝑚 = ( 𝑁 ∖ { 𝐻 } ) → ( 𝑘 ∈ 𝑚 ↔ 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) ) ) |
26 |
25
|
ifbid |
⊢ ( 𝑚 = ( 𝑁 ∖ { 𝐻 } ) → if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
27 |
26
|
ifeq2d |
⊢ ( 𝑚 = ( 𝑁 ∖ { 𝐻 } ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
28 |
27
|
mpoeq3dv |
⊢ ( 𝑚 = ( 𝑁 ∖ { 𝐻 } ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑚 = ( 𝑁 ∖ { 𝐻 } ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑁 ∖ { 𝐻 } ) → ( ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑚 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ↔ ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
31 |
1 2 3 4 5 6
|
maducoeval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
32 |
31
|
3adant1l |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
33 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
34 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ ∅ → if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = ( 𝑘 𝑀 𝑙 ) ) |
35 |
33 34
|
mp1i |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = ( 𝑘 𝑀 𝑙 ) ) |
36 |
35
|
ifeq2d |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
37 |
36
|
mpoeq3ia |
⊢ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
38 |
37
|
fveq2i |
⊢ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
39 |
32 38
|
eqtr4di |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ∅ , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
41 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
42 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
43 |
|
simpl1l |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑅 ∈ CRing ) |
44 |
|
simp1r |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
45 |
1 4
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
46 |
45
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
47 |
44 46
|
syl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
48 |
47
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑁 ∈ Fin ) |
49 |
|
simp1l |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
51 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
52 |
50 51
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
53 |
40 6
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
54 |
52 53
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
55 |
|
simpl1r |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑀 ∈ 𝐵 ) |
56 |
1 40 4
|
matbas2i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
57 |
|
elmapi |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
58 |
55 56 57
|
3syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
60 |
|
eldifi |
⊢ ( 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) → 𝑟 ∈ ( 𝑁 ∖ { 𝐻 } ) ) |
61 |
60
|
ad2antll |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑟 ∈ ( 𝑁 ∖ { 𝐻 } ) ) |
62 |
61
|
eldifad |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑟 ∈ 𝑁 ) |
63 |
62
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑟 ∈ 𝑁 ) |
64 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
65 |
59 63 64
|
fovrnd |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 𝑟 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
66 |
54 65
|
ifcld |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
67 |
40 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
68 |
52 67
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
69 |
68 54
|
ifcld |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
70 |
54
|
3adant2 |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
71 |
58
|
fovrnda |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ) → ( 𝑘 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
72 |
71
|
3impb |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
73 |
70 72
|
ifcld |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
74 |
73 72
|
ifcld |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
75 |
|
simpl2 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝐼 ∈ 𝑁 ) |
76 |
58 62 75
|
fovrnd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( 𝑟 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
77 |
|
simpl3 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝐻 ∈ 𝑁 ) |
78 |
|
eldifsni |
⊢ ( 𝑟 ∈ ( 𝑁 ∖ { 𝐻 } ) → 𝑟 ≠ 𝐻 ) |
79 |
61 78
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → 𝑟 ≠ 𝐻 ) |
80 |
2 40 41 42 43 48 66 69 74 76 62 77 79
|
mdetero |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
81 |
|
ifnot |
⊢ if ( ¬ 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) = if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) |
82 |
81
|
eqcomi |
⊢ if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) = if ( ¬ 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) |
83 |
82
|
a1i |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) = if ( ¬ 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) |
84 |
|
ovif2 |
⊢ ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) = if ( 𝑙 = 𝐼 , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) ) |
85 |
76
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( 𝑟 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
86 |
40 42 5
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑟 𝑀 𝐼 ) ) |
87 |
52 85 86
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑟 𝑀 𝐼 ) ) |
88 |
87
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑙 = 𝐼 ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑟 𝑀 𝐼 ) ) |
89 |
|
oveq2 |
⊢ ( 𝑙 = 𝐼 → ( 𝑟 𝑀 𝑙 ) = ( 𝑟 𝑀 𝐼 ) ) |
90 |
89
|
adantl |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑙 = 𝐼 ) → ( 𝑟 𝑀 𝑙 ) = ( 𝑟 𝑀 𝐼 ) ) |
91 |
88 90
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑙 = 𝐼 ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑟 𝑀 𝑙 ) ) |
92 |
91
|
ifeq1da |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) ) = if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) ) ) |
93 |
40 42 6
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑟 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
94 |
52 85 93
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
95 |
94
|
ifeq2d |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) ) = if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) |
96 |
92 95
|
eqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑙 = 𝐼 , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 1 ) , ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) 0 ) ) = if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) |
97 |
84 96
|
syl5eq |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) = if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) |
98 |
83 97
|
oveq12d |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( if ( ¬ 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ( +g ‘ 𝑅 ) if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) ) |
99 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
100 |
52 99
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → 𝑅 ∈ Mnd ) |
101 |
|
id |
⊢ ( ¬ 𝑙 = 𝐼 → ¬ 𝑙 = 𝐼 ) |
102 |
|
imnan |
⊢ ( ( ¬ 𝑙 = 𝐼 → ¬ 𝑙 = 𝐼 ) ↔ ¬ ( ¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼 ) ) |
103 |
101 102
|
mpbi |
⊢ ¬ ( ¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼 ) |
104 |
103
|
a1i |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ¬ ( ¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼 ) ) |
105 |
40 6 41
|
mndifsplit |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑟 𝑀 𝑙 ) ∈ ( Base ‘ 𝑅 ) ∧ ¬ ( ¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼 ) ) → if ( ( ¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼 ) , ( 𝑟 𝑀 𝑙 ) , 0 ) = ( if ( ¬ 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ( +g ‘ 𝑅 ) if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) ) |
106 |
100 65 104 105
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( ( ¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼 ) , ( 𝑟 𝑀 𝑙 ) , 0 ) = ( if ( ¬ 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ( +g ‘ 𝑅 ) if ( 𝑙 = 𝐼 , ( 𝑟 𝑀 𝑙 ) , 0 ) ) ) |
107 |
|
pm2.1 |
⊢ ( ¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼 ) |
108 |
|
iftrue |
⊢ ( ( ¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼 ) → if ( ( ¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼 ) , ( 𝑟 𝑀 𝑙 ) , 0 ) = ( 𝑟 𝑀 𝑙 ) ) |
109 |
107 108
|
mp1i |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → if ( ( ¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼 ) , ( 𝑟 𝑀 𝑙 ) , 0 ) = ( 𝑟 𝑀 𝑙 ) ) |
110 |
98 106 109
|
3eqtr2d |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑙 ∈ 𝑁 ) → ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( 𝑟 𝑀 𝑙 ) ) |
111 |
110
|
3adant2 |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( 𝑟 𝑀 𝑙 ) ) |
112 |
|
oveq1 |
⊢ ( 𝑘 = 𝑟 → ( 𝑘 𝑀 𝑙 ) = ( 𝑟 𝑀 𝑙 ) ) |
113 |
112
|
eqeq2d |
⊢ ( 𝑘 = 𝑟 → ( ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( 𝑘 𝑀 𝑙 ) ↔ ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( 𝑟 𝑀 𝑙 ) ) ) |
114 |
111 113
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 = 𝑟 → ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( 𝑘 𝑀 𝑙 ) ) ) |
115 |
114
|
imp |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) = ( 𝑘 𝑀 𝑙 ) ) |
116 |
|
iftrue |
⊢ ( 𝑘 = 𝑟 → if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) ) |
117 |
116
|
adantl |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) ) |
118 |
79
|
neneqd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ¬ 𝑟 = 𝐻 ) |
119 |
118
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ¬ 𝑟 = 𝐻 ) |
120 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑟 → ( 𝑘 = 𝐻 ↔ 𝑟 = 𝐻 ) ) |
121 |
120
|
notbid |
⊢ ( 𝑘 = 𝑟 → ( ¬ 𝑘 = 𝐻 ↔ ¬ 𝑟 = 𝐻 ) ) |
122 |
119 121
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 = 𝑟 → ¬ 𝑘 = 𝐻 ) ) |
123 |
122
|
imp |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → ¬ 𝑘 = 𝐻 ) |
124 |
123
|
iffalsed |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
125 |
|
eldifn |
⊢ ( 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) → ¬ 𝑟 ∈ 𝑛 ) |
126 |
125
|
ad2antll |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ¬ 𝑟 ∈ 𝑛 ) |
127 |
126
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ¬ 𝑟 ∈ 𝑛 ) |
128 |
|
eleq1w |
⊢ ( 𝑘 = 𝑟 → ( 𝑘 ∈ 𝑛 ↔ 𝑟 ∈ 𝑛 ) ) |
129 |
128
|
notbid |
⊢ ( 𝑘 = 𝑟 → ( ¬ 𝑘 ∈ 𝑛 ↔ ¬ 𝑟 ∈ 𝑛 ) ) |
130 |
127 129
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 = 𝑟 → ¬ 𝑘 ∈ 𝑛 ) ) |
131 |
130
|
imp |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → ¬ 𝑘 ∈ 𝑛 ) |
132 |
131
|
iffalsed |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = ( 𝑘 𝑀 𝑙 ) ) |
133 |
124 132
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = ( 𝑘 𝑀 𝑙 ) ) |
134 |
115 117 133
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
135 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑟 → if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
136 |
135
|
adantl |
⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
137 |
134 136
|
pm2.61dan |
⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
138 |
137
|
mpoeq3dva |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
139 |
138
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , ( if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ( +g ‘ 𝑅 ) ( ( 𝑟 𝑀 𝐼 ) ( .r ‘ 𝑅 ) if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
140 |
|
neeq2 |
⊢ ( 𝑘 = 𝐻 → ( 𝑟 ≠ 𝑘 ↔ 𝑟 ≠ 𝐻 ) ) |
141 |
140
|
biimparc |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → 𝑟 ≠ 𝑘 ) |
142 |
141
|
necomd |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → 𝑘 ≠ 𝑟 ) |
143 |
142
|
neneqd |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → ¬ 𝑘 = 𝑟 ) |
144 |
143
|
iffalsed |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑙 = 𝐼 , 1 , 0 ) ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
145 |
|
iftrue |
⊢ ( 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
146 |
145
|
adantl |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
147 |
146
|
ifeq2d |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑙 = 𝐼 , 1 , 0 ) ) ) |
148 |
|
iftrue |
⊢ ( 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
149 |
148
|
adantl |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
150 |
144 147 149
|
3eqtr4d |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
151 |
112
|
ifeq2d |
⊢ ( 𝑘 = 𝑟 → if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ) |
152 |
|
vsnid |
⊢ 𝑟 ∈ { 𝑟 } |
153 |
|
elun2 |
⊢ ( 𝑟 ∈ { 𝑟 } → 𝑟 ∈ ( 𝑛 ∪ { 𝑟 } ) ) |
154 |
152 153
|
ax-mp |
⊢ 𝑟 ∈ ( 𝑛 ∪ { 𝑟 } ) |
155 |
|
eleq1w |
⊢ ( 𝑘 = 𝑟 → ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) ↔ 𝑟 ∈ ( 𝑛 ∪ { 𝑟 } ) ) ) |
156 |
154 155
|
mpbiri |
⊢ ( 𝑘 = 𝑟 → 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) ) |
157 |
156
|
iftrued |
⊢ ( 𝑘 = 𝑟 → if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) ) |
158 |
|
iftrue |
⊢ ( 𝑘 = 𝑟 → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) ) |
159 |
151 157 158
|
3eqtr4rd |
⊢ ( 𝑘 = 𝑟 → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
160 |
159
|
adantl |
⊢ ( ( ( 𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻 ) ∧ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
161 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑟 → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
162 |
|
orc |
⊢ ( 𝑘 ∈ 𝑛 → ( 𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟 ) ) |
163 |
|
orel2 |
⊢ ( ¬ 𝑘 = 𝑟 → ( ( 𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟 ) → 𝑘 ∈ 𝑛 ) ) |
164 |
162 163
|
impbid2 |
⊢ ( ¬ 𝑘 = 𝑟 → ( 𝑘 ∈ 𝑛 ↔ ( 𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟 ) ) ) |
165 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) ↔ ( 𝑘 ∈ 𝑛 ∨ 𝑘 ∈ { 𝑟 } ) ) |
166 |
|
velsn |
⊢ ( 𝑘 ∈ { 𝑟 } ↔ 𝑘 = 𝑟 ) |
167 |
166
|
orbi2i |
⊢ ( ( 𝑘 ∈ 𝑛 ∨ 𝑘 ∈ { 𝑟 } ) ↔ ( 𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟 ) ) |
168 |
165 167
|
bitr2i |
⊢ ( ( 𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟 ) ↔ 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) ) |
169 |
164 168
|
bitrdi |
⊢ ( ¬ 𝑘 = 𝑟 → ( 𝑘 ∈ 𝑛 ↔ 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) ) ) |
170 |
169
|
ifbid |
⊢ ( ¬ 𝑘 = 𝑟 → if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
171 |
161 170
|
eqtrd |
⊢ ( ¬ 𝑘 = 𝑟 → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
172 |
171
|
adantl |
⊢ ( ( ( 𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻 ) ∧ ¬ 𝑘 = 𝑟 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
173 |
160 172
|
pm2.61dan |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
174 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
175 |
174
|
ifeq2d |
⊢ ( ¬ 𝑘 = 𝐻 → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
176 |
175
|
adantl |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
177 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
178 |
177
|
adantl |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
179 |
173 176 178
|
3eqtr4d |
⊢ ( ( 𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
180 |
150 179
|
pm2.61dan |
⊢ ( 𝑟 ≠ 𝐻 → if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
181 |
180
|
mpoeq3dv |
⊢ ( 𝑟 ≠ 𝐻 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
182 |
181
|
fveq2d |
⊢ ( 𝑟 ≠ 𝐻 → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
183 |
79 182
|
syl |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑟 , if ( 𝑙 = 𝐼 , 0 , ( 𝑟 𝑀 𝑙 ) ) , if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
184 |
80 139 183
|
3eqtr3d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
185 |
184
|
eqeq2d |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ↔ ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
186 |
185
|
biimpd |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) ∧ ( 𝑛 ⊆ ( 𝑁 ∖ { 𝐻 } ) ∧ 𝑟 ∈ ( ( 𝑁 ∖ { 𝐻 } ) ∖ 𝑛 ) ) ) → ( ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ 𝑛 , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑛 ∪ { 𝑟 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) ) |
187 |
|
difss |
⊢ ( 𝑁 ∖ { 𝐻 } ) ⊆ 𝑁 |
188 |
|
ssfi |
⊢ ( ( 𝑁 ∈ Fin ∧ ( 𝑁 ∖ { 𝐻 } ) ⊆ 𝑁 ) → ( 𝑁 ∖ { 𝐻 } ) ∈ Fin ) |
189 |
47 187 188
|
sylancl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝑁 ∖ { 𝐻 } ) ∈ Fin ) |
190 |
12 18 24 30 39 186 189
|
findcard2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
191 |
|
iba |
⊢ ( 𝑘 = 𝐻 → ( 𝑙 = 𝐼 ↔ ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) ) ) |
192 |
191
|
ifbid |
⊢ ( 𝑘 = 𝐻 → if ( 𝑙 = 𝐼 , 1 , 0 ) = if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) ) |
193 |
|
iftrue |
⊢ ( 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑙 = 𝐼 , 1 , 0 ) ) |
194 |
|
iftrue |
⊢ ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) → if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) = if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) ) |
195 |
194
|
orcs |
⊢ ( 𝑘 = 𝐻 → if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) = if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) ) |
196 |
192 193 195
|
3eqtr4d |
⊢ ( 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
197 |
196
|
adantl |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
198 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐻 → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
199 |
198
|
adantl |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) |
200 |
|
neqne |
⊢ ( ¬ 𝑘 = 𝐻 → 𝑘 ≠ 𝐻 ) |
201 |
200
|
anim2i |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐻 ) → ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻 ) ) |
202 |
201
|
adantlr |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐻 ) → ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻 ) ) |
203 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) ↔ ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻 ) ) |
204 |
202 203
|
sylibr |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐻 ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) ) |
205 |
204
|
iftrued |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) = if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) ) |
206 |
|
biorf |
⊢ ( ¬ 𝑘 = 𝐻 → ( 𝑙 = 𝐼 ↔ ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) ) ) |
207 |
|
id |
⊢ ( ¬ 𝑘 = 𝐻 → ¬ 𝑘 = 𝐻 ) |
208 |
207
|
intnand |
⊢ ( ¬ 𝑘 = 𝐻 → ¬ ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) ) |
209 |
208
|
iffalsed |
⊢ ( ¬ 𝑘 = 𝐻 → if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) = 0 ) |
210 |
209
|
eqcomd |
⊢ ( ¬ 𝑘 = 𝐻 → 0 = if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) ) |
211 |
206 210
|
ifbieq1d |
⊢ ( ¬ 𝑘 = 𝐻 → if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) = if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
212 |
211
|
adantl |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) = if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
213 |
199 205 212
|
3eqtrd |
⊢ ( ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐻 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
214 |
197 213
|
pm2.61dan |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) = if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
215 |
214
|
mpoeq3ia |
⊢ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
216 |
215
|
fveq2i |
⊢ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝐻 , if ( 𝑙 = 𝐼 , 1 , 0 ) , if ( 𝑘 ∈ ( 𝑁 ∖ { 𝐻 } ) , if ( 𝑙 = 𝐼 , 0 , ( 𝑘 𝑀 𝑙 ) ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
217 |
190 216
|
eqtrdi |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁 ) → ( 𝐼 ( 𝐽 ‘ 𝑀 ) 𝐻 ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( ( 𝑘 = 𝐻 ∨ 𝑙 = 𝐼 ) , if ( ( 𝑙 = 𝐼 ∧ 𝑘 = 𝐻 ) , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |