| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madurid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | madurid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | madurid.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑅 ) | 
						
							| 4 |  | madurid.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 5 |  | madurid.i | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 6 |  | madurid.t | ⊢  ·   =  ( .r ‘ 𝐴 ) | 
						
							| 7 |  | madurid.s | ⊢  ∙   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  CRing ) | 
						
							| 9 | 1 3 2 | maduf | ⊢ ( 𝑅  ∈  CRing  →  𝐽 : 𝐵 ⟶ 𝐵 ) | 
						
							| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐽 ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( 𝐽 ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  𝑀  ∈  𝐵 ) | 
						
							| 13 | 1 2 6 | mattposm | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝐽 ‘ 𝑀 )  ∈  𝐵  ∧  𝑀  ∈  𝐵 )  →  tpos  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  ( tpos  𝑀  ·  tpos  ( 𝐽 ‘ 𝑀 ) ) ) | 
						
							| 14 | 8 11 12 13 | syl3anc | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  ( tpos  𝑀  ·  tpos  ( 𝐽 ‘ 𝑀 ) ) ) | 
						
							| 15 | 1 3 2 | madutpos | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐽 ‘ tpos  𝑀 )  =  tpos  ( 𝐽 ‘ 𝑀 ) ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( 𝐽 ‘ tpos  𝑀 )  =  tpos  ( 𝐽 ‘ 𝑀 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( tpos  𝑀  ·  ( 𝐽 ‘ tpos  𝑀 ) )  =  ( tpos  𝑀  ·  tpos  ( 𝐽 ‘ 𝑀 ) ) ) | 
						
							| 18 | 1 2 | mattposcl | ⊢ ( 𝑀  ∈  𝐵  →  tpos  𝑀  ∈  𝐵 ) | 
						
							| 19 | 1 2 3 4 5 6 7 | madurid | ⊢ ( ( tpos  𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( tpos  𝑀  ·  ( 𝐽 ‘ tpos  𝑀 ) )  =  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  ) ) | 
						
							| 20 | 18 19 | sylan | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( tpos  𝑀  ·  ( 𝐽 ‘ tpos  𝑀 ) )  =  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  ) ) | 
						
							| 21 | 14 17 20 | 3eqtr2d | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  ) ) | 
						
							| 22 | 21 | tposeqd | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  tpos  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  tpos  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  ) ) | 
						
							| 23 | 1 2 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 25 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 26 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 27 | 24 25 26 | syl2an | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 28 | 2 6 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝐽 ‘ 𝑀 )  ∈  𝐵  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  ∈  𝐵 ) | 
						
							| 29 | 27 11 12 28 | syl3anc | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  ∈  𝐵 ) | 
						
							| 30 | 1 2 | mattpostpos | ⊢ ( ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  ∈  𝐵  →  tpos  tpos  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  tpos  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 ) ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 33 | 4 1 2 32 | mdetf | ⊢ ( 𝑅  ∈  CRing  →  𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 18 | adantr | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  𝑀  ∈  𝐵 ) | 
						
							| 36 | 34 35 | ffvelcdmd | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( 𝐷 ‘ tpos  𝑀 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 2 5 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 38 | 27 37 | syl | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →   1   ∈  𝐵 ) | 
						
							| 39 | 1 2 32 7 | mattposvs | ⊢ ( ( ( 𝐷 ‘ tpos  𝑀 )  ∈  ( Base ‘ 𝑅 )  ∧   1   ∈  𝐵 )  →  tpos  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  )  =  ( ( 𝐷 ‘ tpos  𝑀 )  ∙  tpos   1  ) ) | 
						
							| 40 | 36 38 39 | syl2anc | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  )  =  ( ( 𝐷 ‘ tpos  𝑀 )  ∙  tpos   1  ) ) | 
						
							| 41 | 4 1 2 | mdettpos | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐷 ‘ tpos  𝑀 )  =  ( 𝐷 ‘ 𝑀 ) ) | 
						
							| 42 | 41 | ancoms | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( 𝐷 ‘ tpos  𝑀 )  =  ( 𝐷 ‘ 𝑀 ) ) | 
						
							| 43 | 1 5 | mattpos1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  tpos   1   =   1  ) | 
						
							| 44 | 24 25 43 | syl2an | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos   1   =   1  ) | 
						
							| 45 | 42 44 | oveq12d | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( ( 𝐷 ‘ tpos  𝑀 )  ∙  tpos   1  )  =  ( ( 𝐷 ‘ 𝑀 )  ∙   1  ) ) | 
						
							| 46 | 40 45 | eqtrd | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  tpos  ( ( 𝐷 ‘ tpos  𝑀 )  ∙   1  )  =  ( ( 𝐷 ‘ 𝑀 )  ∙   1  ) ) | 
						
							| 47 | 22 31 46 | 3eqtr3d | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑅  ∈  CRing )  →  ( ( 𝐽 ‘ 𝑀 )  ·  𝑀 )  =  ( ( 𝐷 ‘ 𝑀 )  ∙   1  ) ) |