Step |
Hyp |
Ref |
Expression |
1 |
|
madurid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
madurid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
madurid.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
4 |
|
madurid.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
5 |
|
madurid.i |
⊢ 1 = ( 1r ‘ 𝐴 ) |
6 |
|
madurid.t |
⊢ · = ( .r ‘ 𝐴 ) |
7 |
|
madurid.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐴 ) |
8 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
9 |
1 3 2
|
maduf |
⊢ ( 𝑅 ∈ CRing → 𝐽 : 𝐵 ⟶ 𝐵 ) |
10 |
9
|
ffvelrnda |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) |
12 |
|
simpl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ 𝐵 ) |
13 |
1 2 6
|
mattposm |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) → tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( tpos 𝑀 · tpos ( 𝐽 ‘ 𝑀 ) ) ) |
14 |
8 11 12 13
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( tpos 𝑀 · tpos ( 𝐽 ‘ 𝑀 ) ) ) |
15 |
1 3 2
|
madutpos |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐽 ‘ tpos 𝑀 ) = tpos ( 𝐽 ‘ 𝑀 ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐽 ‘ tpos 𝑀 ) = tpos ( 𝐽 ‘ 𝑀 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( tpos 𝑀 · ( 𝐽 ‘ tpos 𝑀 ) ) = ( tpos 𝑀 · tpos ( 𝐽 ‘ 𝑀 ) ) ) |
18 |
1 2
|
mattposcl |
⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵 ) |
19 |
1 2 3 4 5 6 7
|
madurid |
⊢ ( ( tpos 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( tpos 𝑀 · ( 𝐽 ‘ tpos 𝑀 ) ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
20 |
18 19
|
sylan |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( tpos 𝑀 · ( 𝐽 ‘ tpos 𝑀 ) ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
21 |
14 17 20
|
3eqtr2d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
22 |
21
|
tposeqd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
23 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
24 |
23
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
25 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
26 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
27 |
24 25 26
|
syl2an |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
28 |
2 6
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ∈ 𝐵 ) |
29 |
27 11 12 28
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ∈ 𝐵 ) |
30 |
1 2
|
mattpostpos |
⊢ ( ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ∈ 𝐵 → tpos tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
33 |
4 1 2 32
|
mdetf |
⊢ ( 𝑅 ∈ CRing → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
35 |
18
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos 𝑀 ∈ 𝐵 ) |
36 |
34 35
|
ffvelrnd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐷 ‘ tpos 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
37 |
2 5
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 1 ∈ 𝐵 ) |
38 |
27 37
|
syl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 1 ∈ 𝐵 ) |
39 |
1 2 32 7
|
mattposvs |
⊢ ( ( ( 𝐷 ‘ tpos 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ 𝐵 ) → tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ tpos 1 ) ) |
40 |
36 38 39
|
syl2anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ tpos 1 ) ) |
41 |
4 1 2
|
mdettpos |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
42 |
41
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
43 |
1 5
|
mattpos1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 ) |
44 |
24 25 43
|
syl2an |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos 1 = 1 ) |
45 |
42 44
|
oveq12d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐷 ‘ tpos 𝑀 ) ∙ tpos 1 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ 1 ) ) |
46 |
40 45
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ 1 ) ) |
47 |
22 31 46
|
3eqtr3d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ 1 ) ) |