| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madufval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | madufval.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 3 |  | madufval.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑅 ) | 
						
							| 4 |  | madufval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 5 |  | madufval.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 6 |  | madufval.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 7 | 1 4 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 9 |  | mpoexga | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) )  ∈  V ) | 
						
							| 10 | 8 8 9 | syl2anc | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) )  ∈  V ) | 
						
							| 11 |  | oveq | ⊢ ( 𝑚  =  𝑀  →  ( 𝑘 𝑚 𝑙 )  =  ( 𝑘 𝑀 𝑙 ) ) | 
						
							| 12 | 11 | ifeq2d | ⊢ ( 𝑚  =  𝑀  →  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑚 𝑙 ) )  =  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) | 
						
							| 13 | 12 | mpoeq3dv | ⊢ ( 𝑚  =  𝑀  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑚 𝑙 ) ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑚 𝑙 ) ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑚 𝑙 ) ) ) )  =  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) ) | 
						
							| 16 | 15 | mpoeq3dva | ⊢ ( 𝑚  =  𝑀  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑚 𝑙 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 | madufval | ⊢ 𝐽  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑚 𝑙 ) ) ) ) ) ) | 
						
							| 18 | 16 17 | fvmptg | ⊢ ( ( 𝑀  ∈  𝐵  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) )  ∈  V )  →  ( 𝐽 ‘ 𝑀 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) | 
						
							| 19 | 10 18 | mpdan | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝐽 ‘ 𝑀 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝐷 ‘ ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  if ( 𝑘  =  𝑗 ,  if ( 𝑙  =  𝑖 ,   1  ,   0  ) ,  ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |