Step |
Hyp |
Ref |
Expression |
1 |
|
madufval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
madufval.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
3 |
|
madufval.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
4 |
|
madufval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
5 |
|
madufval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
madufval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
7 |
1 4
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
8 |
7
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
9 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ∈ V ) |
10 |
8 8 9
|
syl2anc |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ∈ V ) |
11 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑘 𝑚 𝑙 ) = ( 𝑘 𝑀 𝑙 ) ) |
12 |
11
|
ifeq2d |
⊢ ( 𝑚 = 𝑀 → if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑚 𝑙 ) ) = if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) |
13 |
12
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑚 𝑙 ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑚 𝑙 ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑚 𝑙 ) ) ) ) = ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) |
16 |
15
|
mpoeq3dva |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑚 𝑙 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
17 |
1 2 3 4 5 6
|
madufval |
⊢ 𝐽 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑚 𝑙 ) ) ) ) ) ) |
18 |
16 17
|
fvmptg |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ∈ V ) → ( 𝐽 ‘ 𝑀 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |
19 |
10 18
|
mpdan |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝐽 ‘ 𝑀 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐷 ‘ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , 1 , 0 ) , ( 𝑘 𝑀 𝑙 ) ) ) ) ) ) |