Step |
Hyp |
Ref |
Expression |
1 |
|
eqvrelqseqdisj2 |
⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 ) |
2 |
|
eldisjim |
⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → CoElEqvRel 𝐴 ) |
4 |
|
n0eldmqseq |
⊢ ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ¬ ∅ ∈ 𝐴 ) |
5 |
4
|
adantl |
⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ¬ ∅ ∈ 𝐴 ) |
6 |
|
eldisjn0el |
⊢ ( ElDisj 𝐴 → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
7 |
1 6
|
syl |
⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
8 |
5 7
|
mpbid |
⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) |
9 |
3 8
|
jca |
⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
10 |
|
dferALTV2 |
⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
11 |
|
dfcomember3 |
⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
12 |
9 10 11
|
3imtr4i |
⊢ ( 𝑅 ErALTV 𝐴 → CoMembEr 𝐴 ) |