Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 15-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mainer2 | ⊢ ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fences2 | ⊢ ( 𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) | |
2 | eldisjim | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴 ) | |
3 | 2 | anim1i | ⊢ ( ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |
4 | 1 3 | syl | ⊢ ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |