Metamath Proof Explorer


Theorem mainer2

Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 15-Oct-2021)

Ref Expression
Assertion mainer2 ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fences2 ( 𝑅 ErALTV 𝐴 → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )
2 eldisjim ( ElDisj 𝐴 → CoElEqvRel 𝐴 )
3 2 anim1i ( ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )
4 1 3 syl ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )