| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamucl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamucl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamuass.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 4 |  | mamuass.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 5 |  | mamuass.o | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 6 |  | mamuass.p | ⊢ ( 𝜑  →  𝑃  ∈  Fin ) | 
						
							| 7 |  | mamuass.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 8 |  | mamuass.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 9 |  | mamuass.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑂  ×  𝑃 ) ) ) | 
						
							| 10 |  | mamuass.f | ⊢ 𝐹  =  ( 𝑅  maMul  〈 𝑀 ,  𝑁 ,  𝑂 〉 ) | 
						
							| 11 |  | mamuass.g | ⊢ 𝐺  =  ( 𝑅  maMul  〈 𝑀 ,  𝑂 ,  𝑃 〉 ) | 
						
							| 12 |  | mamuass.h | ⊢ 𝐻  =  ( 𝑅  maMul  〈 𝑀 ,  𝑁 ,  𝑃 〉 ) | 
						
							| 13 |  | mamuass.i | ⊢ 𝐼  =  ( 𝑅  maMul  〈 𝑁 ,  𝑂 ,  𝑃 〉 ) | 
						
							| 14 | 2 | ringcmnd | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑅  ∈  CMnd ) | 
						
							| 16 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑂  ∈  Fin ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑁  ∈  Fin ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 19 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 20 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 21 | 7 20 | syl | ⊢ ( 𝜑  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 23 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑖  ∈  𝑀 ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑙  ∈  𝑁 ) | 
						
							| 25 | 22 23 24 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( 𝑖 𝑋 𝑙 )  ∈  𝐵 ) | 
						
							| 26 | 25 | adantrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( 𝑖 𝑋 𝑙 )  ∈  𝐵 ) | 
						
							| 27 |  | elmapi | ⊢ ( 𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  →  𝑌 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 28 | 8 27 | syl | ⊢ ( 𝜑  →  𝑌 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  𝑌 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 30 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  𝑙  ∈  𝑁 ) | 
						
							| 31 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  𝑗  ∈  𝑂 ) | 
						
							| 32 | 29 30 31 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( 𝑙 𝑌 𝑗 )  ∈  𝐵 ) | 
						
							| 33 |  | elmapi | ⊢ ( 𝑍  ∈  ( 𝐵  ↑m  ( 𝑂  ×  𝑃 ) )  →  𝑍 : ( 𝑂  ×  𝑃 ) ⟶ 𝐵 ) | 
						
							| 34 | 9 33 | syl | ⊢ ( 𝜑  →  𝑍 : ( 𝑂  ×  𝑃 ) ⟶ 𝐵 ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑍 : ( 𝑂  ×  𝑃 ) ⟶ 𝐵 ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑗  ∈  𝑂 ) | 
						
							| 37 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑘  ∈  𝑃 ) | 
						
							| 38 | 35 36 37 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) | 
						
							| 39 | 38 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) | 
						
							| 40 | 1 18 19 32 39 | ringcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 41 | 1 18 19 26 40 | ringcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  ∈  𝐵 ) | 
						
							| 42 | 1 15 16 17 41 | gsumcom3fi | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 43 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑅  ∈  Ring ) | 
						
							| 44 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑀  ∈  Fin ) | 
						
							| 45 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑁  ∈  Fin ) | 
						
							| 46 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑂  ∈  Fin ) | 
						
							| 47 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 48 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 49 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  𝑖  ∈  𝑀 ) | 
						
							| 50 | 10 1 18 43 44 45 46 47 48 49 36 | mamufv | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 52 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 53 | 1 18 19 26 32 | ringcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) )  ∈  𝐵 ) | 
						
							| 54 | 53 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) )  ∈  𝐵 ) | 
						
							| 55 |  | eqid | ⊢ ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) )  =  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) | 
						
							| 56 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) )  ∈  V ) | 
						
							| 57 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 58 | 55 45 56 57 | fsuppmptdm | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 59 | 1 52 18 43 45 38 54 58 | gsummulc1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 60 | 1 18 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑖 𝑋 𝑙 )  ∈  𝐵  ∧  ( 𝑙 𝑌 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) )  →  ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 61 | 19 26 32 39 60 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  ( 𝑗  ∈  𝑂  ∧  𝑙  ∈  𝑁 ) )  →  ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 62 | 61 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  ∧  𝑙  ∈  𝑁 )  →  ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 63 | 62 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 𝑙  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 65 | 51 59 64 | 3eqtr2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑗  ∈  𝑂 )  →  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 66 | 65 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑂  ↦  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 69 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 70 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑂  ∈  Fin ) | 
						
							| 71 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑃  ∈  Fin ) | 
						
							| 72 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 73 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑂  ×  𝑃 ) ) ) | 
						
							| 74 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  𝑘  ∈  𝑃 ) | 
						
							| 75 | 13 1 18 68 69 70 71 72 73 24 74 | mamufv | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) )  =  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 77 | 40 | anass1rs | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  ∧  𝑗  ∈  𝑂 )  →  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 78 |  | eqid | ⊢ ( 𝑗  ∈  𝑂  ↦  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 79 |  | ovexd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  ∧  𝑗  ∈  𝑂 )  →  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  V ) | 
						
							| 80 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 81 | 78 70 79 80 | fsuppmptdm | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 82 | 1 52 18 68 70 25 77 81 | gsummulc2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) )  =  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 83 | 76 82 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 84 | 83 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) )  =  ( 𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( ( 𝑙 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 86 | 42 67 85 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) ) ) | 
						
							| 87 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑅  ∈  Ring ) | 
						
							| 88 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑀  ∈  Fin ) | 
						
							| 89 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑃  ∈  Fin ) | 
						
							| 90 | 1 2 10 3 4 5 7 8 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑋 𝐹 𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 92 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑂  ×  𝑃 ) ) ) | 
						
							| 93 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑖  ∈  𝑀 ) | 
						
							| 94 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑘  ∈  𝑃 ) | 
						
							| 95 | 11 1 18 87 88 16 89 91 92 93 94 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑂  ↦  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 96 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 97 | 1 2 13 4 5 6 8 9 | mamucl | ⊢ ( 𝜑  →  ( 𝑌 𝐼 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑃 ) ) ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑌 𝐼 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑃 ) ) ) | 
						
							| 99 | 12 1 18 87 88 17 89 96 98 93 94 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑙  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 ( 𝑌 𝐼 𝑍 ) 𝑘 ) ) ) ) ) | 
						
							| 100 | 86 95 99 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑃 ) )  →  ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 )  =  ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) | 
						
							| 101 | 100 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑃 ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 )  =  ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) | 
						
							| 102 | 1 2 11 3 5 6 90 9 | mamucl | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑃 ) ) ) | 
						
							| 103 |  | elmapi | ⊢ ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑃 ) )  →  ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) : ( 𝑀  ×  𝑃 ) ⟶ 𝐵 ) | 
						
							| 104 |  | ffn | ⊢ ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) : ( 𝑀  ×  𝑃 ) ⟶ 𝐵  →  ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  Fn  ( 𝑀  ×  𝑃 ) ) | 
						
							| 105 | 102 103 104 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  Fn  ( 𝑀  ×  𝑃 ) ) | 
						
							| 106 | 1 2 12 3 4 6 7 97 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑃 ) ) ) | 
						
							| 107 |  | elmapi | ⊢ ( ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑃 ) )  →  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) : ( 𝑀  ×  𝑃 ) ⟶ 𝐵 ) | 
						
							| 108 |  | ffn | ⊢ ( ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) : ( 𝑀  ×  𝑃 ) ⟶ 𝐵  →  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  Fn  ( 𝑀  ×  𝑃 ) ) | 
						
							| 109 | 106 107 108 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  Fn  ( 𝑀  ×  𝑃 ) ) | 
						
							| 110 |  | eqfnov2 | ⊢ ( ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  Fn  ( 𝑀  ×  𝑃 )  ∧  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  Fn  ( 𝑀  ×  𝑃 ) )  →  ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  =  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑃 ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 )  =  ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 111 | 105 109 110 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  =  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑃 ( 𝑖 ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 ) 𝑘 )  =  ( 𝑖 ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 112 | 101 111 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 ) 𝐺 𝑍 )  =  ( 𝑋 𝐻 ( 𝑌 𝐼 𝑍 ) ) ) |