| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamucl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamucl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamudi.f | ⊢ 𝐹  =  ( 𝑅  maMul  〈 𝑀 ,  𝑁 ,  𝑂 〉 ) | 
						
							| 4 |  | mamudi.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 5 |  | mamudi.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 6 |  | mamudi.o | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 7 |  | mamudi.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 8 |  | mamudi.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 9 |  | mamudi.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 10 |  | mamudi.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 11 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  CMnd ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑁  ∈  Fin ) | 
						
							| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 16 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 17 | 8 16 | syl | ⊢ ( 𝜑  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 19 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑀 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 21 | 18 19 20 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑋 𝑗 )  ∈  𝐵 ) | 
						
							| 22 |  | elmapi | ⊢ ( 𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 23 | 10 22 | syl | ⊢ ( 𝜑  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  𝑂 ) | 
						
							| 26 | 24 20 25 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) | 
						
							| 27 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 28 | 1 27 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑋 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 29 | 15 21 26 28 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 30 |  | elmapi | ⊢ ( 𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 31 | 9 30 | syl | ⊢ ( 𝜑  →  𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 33 | 32 19 20 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑌 𝑗 )  ∈  𝐵 ) | 
						
							| 34 | 1 27 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑌 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 )  →  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 35 | 15 33 26 34 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 38 | 1 7 13 14 29 35 36 37 | gsummptfidmadd2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) )  =  ( ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  +  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 39 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 40 |  | ffn | ⊢ ( 𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵  →  𝑋  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 41 | 39 16 40 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑋  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 42 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 43 |  | ffn | ⊢ ( 𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵  →  𝑌  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 44 | 42 30 43 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 45 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑀  ×  𝑁 )  ∈  Fin ) | 
						
							| 46 | 4 5 45 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑁 )  ∈  Fin ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑀  ×  𝑁 )  ∈  Fin ) | 
						
							| 48 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑀  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) ) | 
						
							| 49 | 48 | adantlr | ⊢ ( ( ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 )  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) ) | 
						
							| 50 | 49 | adantll | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) ) | 
						
							| 51 |  | fnfvof | ⊢ ( ( ( 𝑋  Fn  ( 𝑀  ×  𝑁 )  ∧  𝑌  Fn  ( 𝑀  ×  𝑁 ) )  ∧  ( ( 𝑀  ×  𝑁 )  ∈  Fin  ∧  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) ) )  →  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝑖 ,  𝑗 〉 )  =  ( ( 𝑋 ‘ 〈 𝑖 ,  𝑗 〉 )  +  ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 ) ) ) | 
						
							| 52 | 41 44 47 50 51 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝑖 ,  𝑗 〉 )  =  ( ( 𝑋 ‘ 〈 𝑖 ,  𝑗 〉 )  +  ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 ) ) ) | 
						
							| 53 |  | df-ov | ⊢ ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 )  =  ( ( 𝑋  ∘f   +  𝑌 ) ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 54 |  | df-ov | ⊢ ( 𝑖 𝑋 𝑗 )  =  ( 𝑋 ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 55 |  | df-ov | ⊢ ( 𝑖 𝑌 𝑗 )  =  ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 56 | 54 55 | oveq12i | ⊢ ( ( 𝑖 𝑋 𝑗 )  +  ( 𝑖 𝑌 𝑗 ) )  =  ( ( 𝑋 ‘ 〈 𝑖 ,  𝑗 〉 )  +  ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 ) ) | 
						
							| 57 | 52 53 56 | 3eqtr4g | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 )  =  ( ( 𝑖 𝑋 𝑗 )  +  ( 𝑖 𝑌 𝑗 ) ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( ( 𝑖 𝑋 𝑗 )  +  ( 𝑖 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 59 | 1 7 27 | ringdir | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑖 𝑋 𝑗 )  ∈  𝐵  ∧  ( 𝑖 𝑌 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) )  →  ( ( ( 𝑖 𝑋 𝑗 )  +  ( 𝑖 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  +  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 60 | 15 21 33 26 59 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( ( 𝑖 𝑋 𝑗 )  +  ( 𝑖 𝑌 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  +  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  =  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  +  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 62 | 61 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  +  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 63 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 64 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 65 | 14 29 35 63 64 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  +  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 66 | 62 65 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 68 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  Ring ) | 
						
							| 69 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑀  ∈  Fin ) | 
						
							| 70 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑂  ∈  Fin ) | 
						
							| 71 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 72 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 73 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑖  ∈  𝑀 ) | 
						
							| 74 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑘  ∈  𝑂 ) | 
						
							| 75 | 3 1 27 68 69 14 70 71 72 73 74 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 76 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 77 | 3 1 27 68 69 14 70 76 72 73 74 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 78 | 75 77 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  +  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) )  =  ( ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  +  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 79 | 38 67 78 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  +  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 80 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 81 | 2 80 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 82 | 1 7 | mndvcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  ∧  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) )  →  ( 𝑋  ∘f   +  𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 83 | 81 8 9 82 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ∘f   +  𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑋  ∘f   +  𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 85 | 3 1 27 68 69 14 70 84 72 73 74 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑋  ∘f   +  𝑌 ) 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 86 | 1 2 3 4 5 6 8 10 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 87 |  | elmapi | ⊢ ( ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑋 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 88 |  | ffn | ⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 89 | 86 87 88 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 91 | 1 2 3 4 5 6 9 10 | mamucl | ⊢ ( 𝜑  →  ( 𝑌 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 92 |  | elmapi | ⊢ ( ( 𝑌 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑌 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 93 |  | ffn | ⊢ ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 94 | 91 92 93 | 3syl | ⊢ ( 𝜑  →  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 96 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 97 | 4 6 96 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 99 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 101 |  | fnfvof | ⊢ ( ( ( ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 )  ∧  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) )  ∧  ( ( 𝑀  ×  𝑂 )  ∈  Fin  ∧  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) )  →  ( ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  +  ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) ) ) | 
						
							| 102 | 90 95 98 100 101 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  +  ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) ) ) | 
						
							| 103 |  | df-ov | ⊢ ( 𝑖 ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) 𝑘 )  =  ( ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 104 |  | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  =  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 105 |  | df-ov | ⊢ ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 )  =  ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 106 | 104 105 | oveq12i | ⊢ ( ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  +  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) )  =  ( ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  +  ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) ) | 
						
							| 107 | 102 103 106 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) 𝑘 )  =  ( ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  +  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 108 | 79 85 107 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 109 | 108 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 110 | 1 2 3 4 5 6 83 10 | mamucl | ⊢ ( 𝜑  →  ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 111 |  | elmapi | ⊢ ( ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 112 |  | ffn | ⊢ ( ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 113 | 110 111 112 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 114 | 1 7 | mndvcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ∧  ( 𝑌 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) )  →  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 115 | 81 86 91 114 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 116 |  | elmapi | ⊢ ( ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 117 |  | ffn | ⊢ ( ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 118 | 115 116 117 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 119 |  | eqfnov2 | ⊢ ( ( ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 )  ∧  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) )  →  ( ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  =  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 120 | 113 118 119 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  =  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 121 | 109 120 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑋  ∘f   +  𝑌 ) 𝐹 𝑍 )  =  ( ( 𝑋 𝐹 𝑍 )  ∘f   +  ( 𝑌 𝐹 𝑍 ) ) ) |