| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamucl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamucl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamudi.f | ⊢ 𝐹  =  ( 𝑅  maMul  〈 𝑀 ,  𝑁 ,  𝑂 〉 ) | 
						
							| 4 |  | mamudi.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 5 |  | mamudi.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 6 |  | mamudi.o | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 7 |  | mamudir.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 8 |  | mamudir.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 9 |  | mamudir.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 10 |  | mamudir.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 11 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  CMnd ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑁  ∈  Fin ) | 
						
							| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 16 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 17 | 8 16 | syl | ⊢ ( 𝜑  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 19 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑀 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 21 | 18 19 20 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑋 𝑗 )  ∈  𝐵 ) | 
						
							| 22 |  | elmapi | ⊢ ( 𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  →  𝑌 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 23 | 9 22 | syl | ⊢ ( 𝜑  →  𝑌 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  𝑂 ) | 
						
							| 26 | 24 20 25 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 𝑌 𝑘 )  ∈  𝐵 ) | 
						
							| 27 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 28 | 1 27 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑋 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑌 𝑘 )  ∈  𝐵 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  ∈  𝐵 ) | 
						
							| 29 | 15 21 26 28 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  ∈  𝐵 ) | 
						
							| 30 |  | elmapi | ⊢ ( 𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 31 | 10 30 | syl | ⊢ ( 𝜑  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 33 | 32 20 25 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) | 
						
							| 34 | 1 27 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑋 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 35 | 15 21 33 34 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 38 | 1 7 13 14 29 35 36 37 | gsummptfidmadd2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) )  =  ( ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) )  +  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 39 | 24 | ffnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌  Fn  ( 𝑁  ×  𝑂 ) ) | 
						
							| 40 | 32 | ffnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑍  Fn  ( 𝑁  ×  𝑂 ) ) | 
						
							| 41 |  | xpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( 𝑁  ×  𝑂 )  ∈  Fin ) | 
						
							| 42 | 5 6 41 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ×  𝑂 )  ∈  Fin ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑁  ×  𝑂 )  ∈  Fin ) | 
						
							| 44 |  | opelxpi | ⊢ ( ( 𝑗  ∈  𝑁  ∧  𝑘  ∈  𝑂 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) | 
						
							| 45 | 44 | ancoms | ⊢ ( ( 𝑘  ∈  𝑂  ∧  𝑗  ∈  𝑁 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) | 
						
							| 46 | 45 | adantll | ⊢ ( ( ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 )  ∧  𝑗  ∈  𝑁 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) | 
						
							| 47 | 46 | adantll | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) | 
						
							| 48 |  | fnfvof | ⊢ ( ( ( 𝑌  Fn  ( 𝑁  ×  𝑂 )  ∧  𝑍  Fn  ( 𝑁  ×  𝑂 ) )  ∧  ( ( 𝑁  ×  𝑂 )  ∈  Fin  ∧  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) )  →  ( ( 𝑌  ∘f   +  𝑍 ) ‘ 〈 𝑗 ,  𝑘 〉 )  =  ( ( 𝑌 ‘ 〈 𝑗 ,  𝑘 〉 )  +  ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 ) ) ) | 
						
							| 49 | 39 40 43 47 48 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑌  ∘f   +  𝑍 ) ‘ 〈 𝑗 ,  𝑘 〉 )  =  ( ( 𝑌 ‘ 〈 𝑗 ,  𝑘 〉 )  +  ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 ) ) ) | 
						
							| 50 |  | df-ov | ⊢ ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 )  =  ( ( 𝑌  ∘f   +  𝑍 ) ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 51 |  | df-ov | ⊢ ( 𝑗 𝑌 𝑘 )  =  ( 𝑌 ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 52 |  | df-ov | ⊢ ( 𝑗 𝑍 𝑘 )  =  ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 53 | 51 52 | oveq12i | ⊢ ( ( 𝑗 𝑌 𝑘 )  +  ( 𝑗 𝑍 𝑘 ) )  =  ( ( 𝑌 ‘ 〈 𝑗 ,  𝑘 〉 )  +  ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 ) ) | 
						
							| 54 | 49 50 53 | 3eqtr4g | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 )  =  ( ( 𝑗 𝑌 𝑘 )  +  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) )  =  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑗 𝑌 𝑘 )  +  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 56 | 1 7 27 | ringdi | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑖 𝑋 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑌 𝑘 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑗 𝑌 𝑘 )  +  ( 𝑗 𝑍 𝑘 ) ) )  =  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  +  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 57 | 15 21 26 33 56 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑗 𝑌 𝑘 )  +  ( 𝑗 𝑍 𝑘 ) ) )  =  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  +  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 58 | 55 57 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) )  =  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  +  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 59 | 58 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  +  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 60 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) | 
						
							| 61 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 62 | 14 29 35 60 61 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) )  +  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 63 | 59 62 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) ) )  =  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) )  ∘f   +  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 65 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  Ring ) | 
						
							| 66 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑀  ∈  Fin ) | 
						
							| 67 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑂  ∈  Fin ) | 
						
							| 68 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 69 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 70 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑖  ∈  𝑀 ) | 
						
							| 71 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑘  ∈  𝑂 ) | 
						
							| 72 | 3 1 27 65 66 14 67 68 69 70 71 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) | 
						
							| 73 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 74 | 3 1 27 65 66 14 67 68 73 70 71 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 75 | 72 74 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 )  +  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) )  =  ( ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) )  +  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 76 | 38 64 75 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) ) ) )  =  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 )  +  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 77 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 78 | 2 77 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 79 | 1 7 | mndvcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑌  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  ∧  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) )  →  ( 𝑌  ∘f   +  𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 80 | 78 9 10 79 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌  ∘f   +  𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑌  ∘f   +  𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 82 | 3 1 27 65 66 14 67 68 81 70 71 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 ( 𝑌  ∘f   +  𝑍 ) 𝑘 ) ) ) ) ) | 
						
							| 83 | 1 2 3 4 5 6 8 9 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 84 |  | elmapi | ⊢ ( ( 𝑋 𝐹 𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑋 𝐹 𝑌 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 85 |  | ffn | ⊢ ( ( 𝑋 𝐹 𝑌 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑋 𝐹 𝑌 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 86 | 83 84 85 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑌 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑋 𝐹 𝑌 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 88 | 1 2 3 4 5 6 8 10 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 89 |  | elmapi | ⊢ ( ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑋 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 90 |  | ffn | ⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 91 | 88 89 90 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 93 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 94 | 4 6 93 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 96 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 98 |  | fnfvof | ⊢ ( ( ( ( 𝑋 𝐹 𝑌 )  Fn  ( 𝑀  ×  𝑂 )  ∧  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) )  ∧  ( ( 𝑀  ×  𝑂 )  ∈  Fin  ∧  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) )  →  ( ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 ,  𝑘 〉 )  +  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) ) ) | 
						
							| 99 | 87 92 95 97 98 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 ,  𝑘 〉 )  +  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) ) ) | 
						
							| 100 |  | df-ov | ⊢ ( 𝑖 ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) 𝑘 )  =  ( ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 101 |  | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 )  =  ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 102 |  | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  =  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 103 | 101 102 | oveq12i | ⊢ ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 )  +  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) )  =  ( ( ( 𝑋 𝐹 𝑌 ) ‘ 〈 𝑖 ,  𝑘 〉 )  +  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) ) | 
						
							| 104 | 99 100 103 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) 𝑘 )  =  ( ( 𝑖 ( 𝑋 𝐹 𝑌 ) 𝑘 )  +  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 105 | 76 82 104 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 106 | 105 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 107 | 1 2 3 4 5 6 8 80 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 108 |  | elmapi | ⊢ ( ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 109 |  | ffn | ⊢ ( ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 110 | 107 108 109 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 111 | 1 7 | mndvcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑋 𝐹 𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ∧  ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) )  →  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 112 | 78 83 88 111 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 113 |  | elmapi | ⊢ ( ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 114 |  | ffn | ⊢ ( ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 115 | 112 113 114 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 116 |  | eqfnov2 | ⊢ ( ( ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  Fn  ( 𝑀  ×  𝑂 )  ∧  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  =  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 117 | 110 115 116 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  =  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 118 | 106 117 | mpbird | ⊢ ( 𝜑  →  ( 𝑋 𝐹 ( 𝑌  ∘f   +  𝑍 ) )  =  ( ( 𝑋 𝐹 𝑌 )  ∘f   +  ( 𝑋 𝐹 𝑍 ) ) ) |