| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamumat1cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamumat1cl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamumat1cl.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | mamumat1cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | mamumat1cl.i | ⊢ 𝐼  =  ( 𝑖  ∈  𝑀 ,  𝑗  ∈  𝑀  ↦  if ( 𝑖  =  𝑗 ,   1  ,   0  ) ) | 
						
							| 6 |  | mamumat1cl.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 7 |  | mamulid.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 8 |  | mamulid.f | ⊢ 𝐹  =  ( 𝑅  maMul  〈 𝑀 ,  𝑀 ,  𝑁 〉 ) | 
						
							| 9 |  | mamulid.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 12 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑀  ∈  Fin ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑁  ∈  Fin ) | 
						
							| 14 | 1 2 3 4 5 6 | mamumat1cl | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝐼  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑀 ) ) ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑙  ∈  𝑀 ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑘  ∈  𝑁 ) | 
						
							| 19 | 8 1 10 11 12 12 13 15 16 17 18 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ) ) | 
						
							| 20 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 21 | 11 20 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 22 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑀 ) )  →  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) | 
						
							| 24 | 14 23 | syl | ⊢ ( 𝜑  →  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) | 
						
							| 26 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑙  ∈  𝑀 ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑚  ∈  𝑀 ) | 
						
							| 28 | 25 26 27 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  ( 𝑙 𝐼 𝑚 )  ∈  𝐵 ) | 
						
							| 29 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 30 | 9 29 | syl | ⊢ ( 𝜑  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 32 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑘  ∈  𝑁 ) | 
						
							| 33 | 31 27 32 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  ( 𝑚 𝑋 𝑘 )  ∈  𝐵 ) | 
						
							| 34 | 1 10 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑙 𝐼 𝑚 )  ∈  𝐵  ∧  ( 𝑚 𝑋 𝑘 )  ∈  𝐵 )  →  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  ∈  𝐵 ) | 
						
							| 35 | 22 28 33 34 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  ∈  𝐵 ) | 
						
							| 36 | 35 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) : 𝑀 ⟶ 𝐵 ) | 
						
							| 37 | 26 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  𝑙  ∈  𝑀 ) | 
						
							| 38 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  𝑚  ∈  𝑀 ) | 
						
							| 39 | 1 2 3 4 5 6 | mat1comp | ⊢ ( ( 𝑙  ∈  𝑀  ∧  𝑚  ∈  𝑀 )  →  ( 𝑙 𝐼 𝑚 )  =  if ( 𝑙  =  𝑚 ,   1  ,   0  ) ) | 
						
							| 40 |  | equcom | ⊢ ( 𝑙  =  𝑚  ↔  𝑚  =  𝑙 ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝑙  ∈  𝑀  ∧  𝑚  ∈  𝑀 )  →  ( 𝑙  =  𝑚  ↔  𝑚  =  𝑙 ) ) | 
						
							| 42 | 41 | ifbid | ⊢ ( ( 𝑙  ∈  𝑀  ∧  𝑚  ∈  𝑀 )  →  if ( 𝑙  =  𝑚 ,   1  ,   0  )  =  if ( 𝑚  =  𝑙 ,   1  ,   0  ) ) | 
						
							| 43 | 39 42 | eqtrd | ⊢ ( ( 𝑙  ∈  𝑀  ∧  𝑚  ∈  𝑀 )  →  ( 𝑙 𝐼 𝑚 )  =  if ( 𝑚  =  𝑙 ,   1  ,   0  ) ) | 
						
							| 44 | 37 38 43 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  ( 𝑙 𝐼 𝑚 )  =  if ( 𝑚  =  𝑙 ,   1  ,   0  ) ) | 
						
							| 45 |  | ifnefalse | ⊢ ( 𝑚  ≠  𝑙  →  if ( 𝑚  =  𝑙 ,   1  ,   0  )  =   0  ) | 
						
							| 46 | 45 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  if ( 𝑚  =  𝑙 ,   1  ,   0  )  =   0  ) | 
						
							| 47 | 44 46 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  ( 𝑙 𝐼 𝑚 )  =   0  ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  =  (  0  ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) | 
						
							| 49 | 1 10 4 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑚 𝑋 𝑘 )  ∈  𝐵 )  →  (  0  ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  =   0  ) | 
						
							| 50 | 22 33 49 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀 )  →  (  0  ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  =   0  ) | 
						
							| 51 | 50 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  (  0  ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  =   0  ) | 
						
							| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  ∧  𝑚  ∈  𝑀  ∧  𝑚  ≠  𝑙 )  →  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  =   0  ) | 
						
							| 53 | 52 12 | suppsssn | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) )  supp   0  )  ⊆  { 𝑙 } ) | 
						
							| 54 | 1 4 21 12 17 36 53 | gsumpt | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑅  Σg  ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) )  =  ( ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 ) ) | 
						
							| 55 |  | oveq2 | ⊢ ( 𝑚  =  𝑙  →  ( 𝑙 𝐼 𝑚 )  =  ( 𝑙 𝐼 𝑙 ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝑚  =  𝑙  →  ( 𝑚 𝑋 𝑘 )  =  ( 𝑙 𝑋 𝑘 ) ) | 
						
							| 57 | 55 56 | oveq12d | ⊢ ( 𝑚  =  𝑙  →  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) )  =  ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) )  =  ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) | 
						
							| 59 |  | ovex | ⊢ ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) )  ∈  V | 
						
							| 60 | 57 58 59 | fvmpt | ⊢ ( 𝑙  ∈  𝑀  →  ( ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 )  =  ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) | 
						
							| 61 | 60 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 )  =  ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) | 
						
							| 62 |  | equequ1 | ⊢ ( 𝑖  =  𝑙  →  ( 𝑖  =  𝑗  ↔  𝑙  =  𝑗 ) ) | 
						
							| 63 | 62 | ifbid | ⊢ ( 𝑖  =  𝑙  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  =  if ( 𝑙  =  𝑗 ,   1  ,   0  ) ) | 
						
							| 64 |  | equequ2 | ⊢ ( 𝑗  =  𝑙  →  ( 𝑙  =  𝑗  ↔  𝑙  =  𝑙 ) ) | 
						
							| 65 | 64 | ifbid | ⊢ ( 𝑗  =  𝑙  →  if ( 𝑙  =  𝑗 ,   1  ,   0  )  =  if ( 𝑙  =  𝑙 ,   1  ,   0  ) ) | 
						
							| 66 |  | equid | ⊢ 𝑙  =  𝑙 | 
						
							| 67 | 66 | iftruei | ⊢ if ( 𝑙  =  𝑙 ,   1  ,   0  )  =   1 | 
						
							| 68 | 65 67 | eqtrdi | ⊢ ( 𝑗  =  𝑙  →  if ( 𝑙  =  𝑗 ,   1  ,   0  )  =   1  ) | 
						
							| 69 | 3 | fvexi | ⊢  1   ∈  V | 
						
							| 70 | 63 68 5 69 | ovmpo | ⊢ ( ( 𝑙  ∈  𝑀  ∧  𝑙  ∈  𝑀 )  →  ( 𝑙 𝐼 𝑙 )  =   1  ) | 
						
							| 71 | 70 | anidms | ⊢ ( 𝑙  ∈  𝑀  →  ( 𝑙 𝐼 𝑙 )  =   1  ) | 
						
							| 72 | 71 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑙 𝐼 𝑙 )  =   1  ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) )  =  (  1  ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) | 
						
							| 74 | 30 | fovcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑙 𝑋 𝑘 )  ∈  𝐵 ) | 
						
							| 75 | 1 10 3 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑙 𝑋 𝑘 )  ∈  𝐵 )  →  (  1  ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) )  =  ( 𝑙 𝑋 𝑘 ) ) | 
						
							| 76 | 11 74 75 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  (  1  ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) )  =  ( 𝑙 𝑋 𝑘 ) ) | 
						
							| 77 | 61 73 76 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( ( 𝑚  ∈  𝑀  ↦  ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 )  =  ( 𝑙 𝑋 𝑘 ) ) | 
						
							| 78 | 19 54 77 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  𝑀  ∧  𝑘  ∈  𝑁 ) )  →  ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 )  =  ( 𝑙 𝑋 𝑘 ) ) | 
						
							| 79 | 78 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑙  ∈  𝑀 ∀ 𝑘  ∈  𝑁 ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 )  =  ( 𝑙 𝑋 𝑘 ) ) | 
						
							| 80 | 1 2 8 6 6 7 14 9 | mamucl | ⊢ ( 𝜑  →  ( 𝐼 𝐹 𝑋 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 81 |  | elmapi | ⊢ ( ( 𝐼 𝐹 𝑋 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  ( 𝐼 𝐹 𝑋 ) : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 82 | 80 81 | syl | ⊢ ( 𝜑  →  ( 𝐼 𝐹 𝑋 ) : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 83 | 82 | ffnd | ⊢ ( 𝜑  →  ( 𝐼 𝐹 𝑋 )  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 84 | 30 | ffnd | ⊢ ( 𝜑  →  𝑋  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 85 |  | eqfnov2 | ⊢ ( ( ( 𝐼 𝐹 𝑋 )  Fn  ( 𝑀  ×  𝑁 )  ∧  𝑋  Fn  ( 𝑀  ×  𝑁 ) )  →  ( ( 𝐼 𝐹 𝑋 )  =  𝑋  ↔  ∀ 𝑙  ∈  𝑀 ∀ 𝑘  ∈  𝑁 ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 )  =  ( 𝑙 𝑋 𝑘 ) ) ) | 
						
							| 86 | 83 84 85 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 𝐹 𝑋 )  =  𝑋  ↔  ∀ 𝑙  ∈  𝑀 ∀ 𝑘  ∈  𝑁 ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 )  =  ( 𝑙 𝑋 𝑘 ) ) ) | 
						
							| 87 | 79 86 | mpbird | ⊢ ( 𝜑  →  ( 𝐼 𝐹 𝑋 )  =  𝑋 ) |