| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamumat1cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamumat1cl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamumat1cl.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | mamumat1cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | mamumat1cl.i | ⊢ 𝐼  =  ( 𝑖  ∈  𝑀 ,  𝑗  ∈  𝑀  ↦  if ( 𝑖  =  𝑗 ,   1  ,   0  ) ) | 
						
							| 6 |  | mamumat1cl.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 7 | 1 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 8 | 1 4 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐵 ) | 
						
							| 9 | 7 8 | ifcld | ⊢ ( 𝑅  ∈  Ring  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  ∈  𝐵 ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  ∈  𝐵 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑗  ∈  𝑀 ) )  →  if ( 𝑖  =  𝑗 ,   1  ,   0  )  ∈  𝐵 ) | 
						
							| 12 | 11 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑀 ∀ 𝑗  ∈  𝑀 if ( 𝑖  =  𝑗 ,   1  ,   0  )  ∈  𝐵 ) | 
						
							| 13 | 5 | fmpo | ⊢ ( ∀ 𝑖  ∈  𝑀 ∀ 𝑗  ∈  𝑀 if ( 𝑖  =  𝑗 ,   1  ,   0  )  ∈  𝐵  ↔  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝜑  →  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) | 
						
							| 15 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 16 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( 𝑀  ×  𝑀 )  ∈  Fin ) | 
						
							| 17 | 6 6 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑀 )  ∈  Fin ) | 
						
							| 18 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝑀  ×  𝑀 )  ∈  Fin )  →  ( 𝐼  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑀 ) )  ↔  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) ) | 
						
							| 19 | 15 17 18 | sylancr | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑀 ) )  ↔  𝐼 : ( 𝑀  ×  𝑀 ) ⟶ 𝐵 ) ) | 
						
							| 20 | 14 19 | mpbird | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑀 ) ) ) |