Step |
Hyp |
Ref |
Expression |
1 |
|
mamutpos.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) |
2 |
|
mamutpos.g |
⊢ 𝐺 = ( 𝑅 maMul 〈 𝑃 , 𝑁 , 𝑀 〉 ) |
3 |
|
mamutpos.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
mamutpos.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
mamutpos.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
6 |
|
mamutpos.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
7 |
|
mamutpos.p |
⊢ ( 𝜑 → 𝑃 ∈ Fin ) |
8 |
|
mamutpos.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
9 |
|
mamutpos.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) |
10 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) |
11 |
10
|
tposmpo |
⊢ tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) |
12 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝜑 ) |
13 |
12 4
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
14 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
15 |
12 8 14
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
16 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑗 ∈ 𝑀 ) |
17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
18 |
15 16 17
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑗 𝑋 𝑘 ) ∈ 𝐵 ) |
19 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
20 |
12 9 19
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
21 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑖 ∈ 𝑃 ) |
22 |
20 17 21
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝑌 𝑖 ) ∈ 𝐵 ) |
23 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
24 |
3 23
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑗 𝑋 𝑘 ) ∈ 𝐵 ∧ ( 𝑘 𝑌 𝑖 ) ∈ 𝐵 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) ) |
25 |
13 18 22 24
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) ) |
26 |
|
ovtpos |
⊢ ( 𝑖 tpos 𝑌 𝑘 ) = ( 𝑘 𝑌 𝑖 ) |
27 |
|
ovtpos |
⊢ ( 𝑘 tpos 𝑋 𝑗 ) = ( 𝑗 𝑋 𝑘 ) |
28 |
26 27
|
oveq12i |
⊢ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) = ( ( 𝑘 𝑌 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑋 𝑘 ) ) |
29 |
25 28
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) = ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) |
30 |
29
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) → ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑃 ∧ 𝑗 ∈ 𝑀 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) |
32 |
31
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
33 |
11 32
|
syl5eq |
⊢ ( 𝜑 → tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
34 |
1 3 23 4 5 6 7 8 9
|
mamuval |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) ) |
35 |
34
|
tposeqd |
⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = tpos ( 𝑗 ∈ 𝑀 , 𝑖 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑗 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑖 ) ) ) ) ) ) |
36 |
|
tposmap |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → tpos 𝑌 ∈ ( 𝐵 ↑m ( 𝑃 × 𝑁 ) ) ) |
37 |
9 36
|
syl |
⊢ ( 𝜑 → tpos 𝑌 ∈ ( 𝐵 ↑m ( 𝑃 × 𝑁 ) ) ) |
38 |
|
tposmap |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → tpos 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
39 |
8 38
|
syl |
⊢ ( 𝜑 → tpos 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
40 |
2 3 23 4 7 6 5 37 39
|
mamuval |
⊢ ( 𝜑 → ( tpos 𝑌 𝐺 tpos 𝑋 ) = ( 𝑖 ∈ 𝑃 , 𝑗 ∈ 𝑀 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 tpos 𝑌 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 tpos 𝑋 𝑗 ) ) ) ) ) ) |
41 |
33 35 40
|
3eqtr4d |
⊢ ( 𝜑 → tpos ( 𝑋 𝐹 𝑌 ) = ( tpos 𝑌 𝐺 tpos 𝑋 ) ) |