Step |
Hyp |
Ref |
Expression |
1 |
|
mamucl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mamucl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
mamudi.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) |
4 |
|
mamudi.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
5 |
|
mamudi.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
6 |
|
mamudi.o |
⊢ ( 𝜑 → 𝑂 ∈ Fin ) |
7 |
|
mamuvs1.t |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mamuvs1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
mamuvs1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
10 |
|
mamuvs1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ 𝐵 ) |
16 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
17 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
18 |
9 17
|
syl |
⊢ ( 𝜑 → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
20 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
22 |
19 20 21
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ) |
23 |
|
elmapi |
⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
24 |
10 23
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
26 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) |
27 |
25 21 26
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
28 |
1 7
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
29 |
16 22 27 28
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
30 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) |
31 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) |
32 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
33 |
30 14 31 32
|
fsuppmptdm |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
34 |
1 11 12 7 13 14 15 29 33
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
35 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) |
36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) |
37 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
38 |
36 37
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
39 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
40 |
4 5 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ Fin ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
42 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐵 ) |
43 |
|
ffn |
⊢ ( 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
44 |
9 17 43
|
3syl |
⊢ ( 𝜑 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
46 |
|
df-ov |
⊢ ( 𝑖 𝑌 𝑗 ) = ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) |
47 |
46
|
eqcomi |
⊢ ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) |
48 |
47
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) ) |
49 |
41 42 45 48
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
50 |
38 49
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
51 |
35 50
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
52 |
51
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) ) |
53 |
1 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
54 |
16 42 22 27 53
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
55 |
52 54
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
56 |
55
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
58 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
59 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
60 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
61 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
62 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) |
63 |
3 1 7 13 58 14 59 60 61 36 62
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
64 |
63
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
65 |
34 57 64
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
66 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
67 |
8 66
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
68 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
69 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑁 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
70 |
68 40 69
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
71 |
67 70
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
72 |
1 7
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ∧ 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
73 |
2 71 9 72
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
75 |
3 1 7 13 58 14 59 74 61 36 62
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
76 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) |
77 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
79 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
80 |
4 6 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
82 |
1 2 3 4 5 6 9 10
|
mamucl |
⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
83 |
|
elmapi |
⊢ ( ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
84 |
|
ffn |
⊢ ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
85 |
82 83 84
|
3syl |
⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
87 |
|
df-ov |
⊢ ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) |
88 |
87
|
eqcomi |
⊢ ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) |
89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) |
90 |
81 15 86 89
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
91 |
78 90
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
92 |
76 91
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
93 |
65 75 92
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
94 |
93
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
95 |
1 2 3 4 5 6 73 10
|
mamucl |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
96 |
|
elmapi |
⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
97 |
|
ffn |
⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
98 |
95 96 97
|
3syl |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
99 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
100 |
8 99
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
101 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
102 |
68 80 101
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
103 |
100 102
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
104 |
1 7
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
105 |
2 103 82 104
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
106 |
|
elmapi |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
107 |
|
ffn |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
108 |
105 106 107
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
109 |
|
eqfnov2 |
⊢ ( ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
110 |
98 108 109
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
111 |
94 110
|
mpbird |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ) |