| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamucl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mamucl.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 3 |  | mamudi.f | ⊢ 𝐹  =  ( 𝑅  maMul  〈 𝑀 ,  𝑁 ,  𝑂 〉 ) | 
						
							| 4 |  | mamudi.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 5 |  | mamudi.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 6 |  | mamudi.o | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 7 |  | mamuvs1.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | mamuvs1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | mamuvs1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 10 |  | mamuvs1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  Ring ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑁  ∈  Fin ) | 
						
							| 14 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 16 |  | elmapi | ⊢ ( 𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 17 | 9 16 | syl | ⊢ ( 𝜑  →  𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 19 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑀 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 21 | 18 19 20 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑌 𝑗 )  ∈  𝐵 ) | 
						
							| 22 |  | elmapi | ⊢ ( 𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 23 | 10 22 | syl | ⊢ ( 𝜑  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  𝑂 ) | 
						
							| 26 | 24 20 25 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) | 
						
							| 27 | 1 7 15 21 26 | ringcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 28 |  | eqid | ⊢ ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 29 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) )  ∈  V ) | 
						
							| 30 |  | fvexd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 31 | 28 13 29 30 | fsuppmptdm | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 32 | 1 11 7 12 13 14 27 31 | gsummulc2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( 𝑋  ·  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) )  =  ( 𝑋  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 33 |  | df-ov | ⊢ ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  =  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 34 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑖  ∈  𝑀 ) | 
						
							| 35 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑀  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) ) | 
						
							| 36 | 34 35 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) ) | 
						
							| 37 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑀  ×  𝑁 )  ∈  Fin ) | 
						
							| 38 | 4 5 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑁 )  ∈  Fin ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑀  ×  𝑁 )  ∈  Fin ) | 
						
							| 40 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐵 ) | 
						
							| 41 |  | ffn | ⊢ ( 𝑌 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵  →  𝑌  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 42 | 9 16 41 | 3syl | ⊢ ( 𝜑  →  𝑌  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌  Fn  ( 𝑀  ×  𝑁 ) ) | 
						
							| 44 |  | df-ov | ⊢ ( 𝑖 𝑌 𝑗 )  =  ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 45 | 44 | eqcomi | ⊢ ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 )  =  ( 𝑖 𝑌 𝑗 ) | 
						
							| 46 | 45 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  ∧  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) )  →  ( 𝑌 ‘ 〈 𝑖 ,  𝑗 〉 )  =  ( 𝑖 𝑌 𝑗 ) ) | 
						
							| 47 | 39 40 43 46 | ofc1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  ∧  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑀  ×  𝑁 ) )  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) ‘ 〈 𝑖 ,  𝑗 〉 )  =  ( 𝑋  ·  ( 𝑖 𝑌 𝑗 ) ) ) | 
						
							| 48 | 36 47 | mpdan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) ‘ 〈 𝑖 ,  𝑗 〉 )  =  ( 𝑋  ·  ( 𝑖 𝑌 𝑗 ) ) ) | 
						
							| 49 | 33 48 | eqtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  =  ( 𝑋  ·  ( 𝑖 𝑌 𝑗 ) ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) )  =  ( ( 𝑋  ·  ( 𝑖 𝑌 𝑗 ) )  ·  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 51 | 1 7 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑖 𝑌 𝑗 )  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) )  →  ( ( 𝑋  ·  ( 𝑖 𝑌 𝑗 ) )  ·  ( 𝑗 𝑍 𝑘 ) )  =  ( 𝑋  ·  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 52 | 15 40 21 26 51 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑋  ·  ( 𝑖 𝑌 𝑗 ) )  ·  ( 𝑗 𝑍 𝑘 ) )  =  ( 𝑋  ·  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 53 | 50 52 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) )  =  ( 𝑋  ·  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 54 | 53 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( 𝑋  ·  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( 𝑋  ·  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 56 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑀  ∈  Fin ) | 
						
							| 57 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑂  ∈  Fin ) | 
						
							| 58 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 59 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 60 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑘  ∈  𝑂 ) | 
						
							| 61 | 3 1 7 12 56 13 57 58 59 34 60 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑋  ·  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) )  =  ( 𝑋  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑌 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 63 | 32 55 62 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) )  =  ( 𝑋  ·  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 64 |  | fconst6g | ⊢ ( 𝑋  ∈  𝐵  →  ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 65 | 8 64 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 66 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 67 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝑀  ×  𝑁 )  ∈  Fin )  →  ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  ↔  ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) ) | 
						
							| 68 | 66 38 67 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  ↔  ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) ) | 
						
							| 69 | 65 68 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 70 | 1 7 | ringvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  ∧  𝑌  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) )  →  ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 71 | 2 69 9 70 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 73 | 3 1 7 12 56 13 57 72 59 34 60 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 74 |  | df-ov | ⊢ ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) 𝑘 )  =  ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 75 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 77 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 78 | 4 6 77 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 80 | 1 2 3 4 5 6 9 10 | mamucl | ⊢ ( 𝜑  →  ( 𝑌 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 81 |  | elmapi | ⊢ ( ( 𝑌 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑌 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 82 |  | ffn | ⊢ ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 83 | 80 81 82 | 3syl | ⊢ ( 𝜑  →  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑌 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 85 |  | df-ov | ⊢ ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 )  =  ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 86 | 85 | eqcomi | ⊢ ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) | 
						
							| 87 | 86 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) | 
						
							| 88 | 79 14 84 87 | ofc1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) )  →  ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑋  ·  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 89 | 76 88 | mpdan | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑋  ·  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 90 | 74 89 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) 𝑘 )  =  ( 𝑋  ·  ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) | 
						
							| 91 | 63 73 90 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 92 | 91 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 93 | 1 2 3 4 5 6 71 10 | mamucl | ⊢ ( 𝜑  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 94 |  | elmapi | ⊢ ( ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 95 |  | ffn | ⊢ ( ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 96 | 93 94 95 | 3syl | ⊢ ( 𝜑  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 97 |  | fconst6g | ⊢ ( 𝑋  ∈  𝐵  →  ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 98 | 8 97 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 99 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝑀  ×  𝑂 )  ∈  Fin )  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ↔  ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) ) | 
						
							| 100 | 66 78 99 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ↔  ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) ) | 
						
							| 101 | 98 100 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 102 | 1 7 | ringvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ∧  ( 𝑌 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) )  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 103 | 2 101 80 102 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 104 |  | elmapi | ⊢ ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 105 |  | ffn | ⊢ ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 106 | 103 104 105 | 3syl | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 107 |  | eqfnov2 | ⊢ ( ( ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 )  ∧  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) )  →  ( ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  =  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 108 | 96 106 107 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  =  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 109 | 92 108 | mpbird | ⊢ ( 𝜑  →  ( ( ( ( 𝑀  ×  𝑁 )  ×  { 𝑋 } )  ∘f   ·  𝑌 ) 𝐹 𝑍 )  =  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑋 } )  ∘f   ·  ( 𝑌 𝐹 𝑍 ) ) ) |