Metamath Proof Explorer


Theorem mamuvs1

Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses mamucl.b 𝐵 = ( Base ‘ 𝑅 )
mamucl.r ( 𝜑𝑅 ∈ Ring )
mamudi.f 𝐹 = ( 𝑅 maMul ⟨ 𝑀 , 𝑁 , 𝑂 ⟩ )
mamudi.m ( 𝜑𝑀 ∈ Fin )
mamudi.n ( 𝜑𝑁 ∈ Fin )
mamudi.o ( 𝜑𝑂 ∈ Fin )
mamuvs1.t · = ( .r𝑅 )
mamuvs1.x ( 𝜑𝑋𝐵 )
mamuvs1.y ( 𝜑𝑌 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
mamuvs1.z ( 𝜑𝑍 ∈ ( 𝐵m ( 𝑁 × 𝑂 ) ) )
Assertion mamuvs1 ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 mamucl.b 𝐵 = ( Base ‘ 𝑅 )
2 mamucl.r ( 𝜑𝑅 ∈ Ring )
3 mamudi.f 𝐹 = ( 𝑅 maMul ⟨ 𝑀 , 𝑁 , 𝑂 ⟩ )
4 mamudi.m ( 𝜑𝑀 ∈ Fin )
5 mamudi.n ( 𝜑𝑁 ∈ Fin )
6 mamudi.o ( 𝜑𝑂 ∈ Fin )
7 mamuvs1.t · = ( .r𝑅 )
8 mamuvs1.x ( 𝜑𝑋𝐵 )
9 mamuvs1.y ( 𝜑𝑌 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
10 mamuvs1.z ( 𝜑𝑍 ∈ ( 𝐵m ( 𝑁 × 𝑂 ) ) )
11 eqid ( 0g𝑅 ) = ( 0g𝑅 )
12 2 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑅 ∈ Ring )
13 5 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑁 ∈ Fin )
14 8 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑋𝐵 )
15 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑅 ∈ Ring )
16 elmapi ( 𝑌 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 )
17 9 16 syl ( 𝜑𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 )
18 17 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 )
19 simplrl ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑖𝑀 )
20 simpr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑗𝑁 )
21 18 19 20 fovcdmd ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 )
22 elmapi ( 𝑍 ∈ ( 𝐵m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 )
23 10 22 syl ( 𝜑𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 )
24 23 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 )
25 simplrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑘𝑂 )
26 24 20 25 fovcdmd ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 )
27 1 7 15 21 26 ringcld ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 )
28 eqid ( 𝑗𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) )
29 ovexd ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V )
30 fvexd ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 0g𝑅 ) ∈ V )
31 28 13 29 30 fsuppmptdm ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑗𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g𝑅 ) )
32 1 11 7 12 13 14 27 31 gsummulc2 ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑅 Σg ( 𝑗𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) )
33 df-ov ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ ⟨ 𝑖 , 𝑗 ⟩ )
34 simprl ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑖𝑀 )
35 opelxpi ( ( 𝑖𝑀𝑗𝑁 ) → ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝑀 × 𝑁 ) )
36 34 35 sylan ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝑀 × 𝑁 ) )
37 xpfi ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑀 × 𝑁 ) ∈ Fin )
38 4 5 37 syl2anc ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ Fin )
39 38 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( 𝑀 × 𝑁 ) ∈ Fin )
40 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑋𝐵 )
41 ffn ( 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵𝑌 Fn ( 𝑀 × 𝑁 ) )
42 9 16 41 3syl ( 𝜑𝑌 Fn ( 𝑀 × 𝑁 ) )
43 42 ad2antrr ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → 𝑌 Fn ( 𝑀 × 𝑁 ) )
44 df-ov ( 𝑖 𝑌 𝑗 ) = ( 𝑌 ‘ ⟨ 𝑖 , 𝑗 ⟩ )
45 44 eqcomi ( 𝑌 ‘ ⟨ 𝑖 , 𝑗 ⟩ ) = ( 𝑖 𝑌 𝑗 )
46 45 a1i ( ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝑀 × 𝑁 ) ) → ( 𝑌 ‘ ⟨ 𝑖 , 𝑗 ⟩ ) = ( 𝑖 𝑌 𝑗 ) )
47 39 40 43 46 ofc1 ( ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝑀 × 𝑁 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ ⟨ 𝑖 , 𝑗 ⟩ ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) )
48 36 47 mpdan ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ ⟨ 𝑖 , 𝑗 ⟩ ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) )
49 33 48 eqtrid ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) )
50 49 oveq1d ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) )
51 1 7 ringass ( ( 𝑅 ∈ Ring ∧ ( 𝑋𝐵 ∧ ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) )
52 15 40 21 26 51 syl13anc ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) )
53 50 52 eqtrd ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ 𝑗𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) )
54 53 mpteq2dva ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑗𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) )
55 54 oveq2d ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) )
56 4 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑀 ∈ Fin )
57 6 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑂 ∈ Fin )
58 9 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑌 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
59 10 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑍 ∈ ( 𝐵m ( 𝑁 × 𝑂 ) ) )
60 simprr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → 𝑘𝑂 )
61 3 1 7 12 56 13 57 58 59 34 60 mamufv ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) )
62 61 oveq2d ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) )
63 32 55 62 3eqtr4d ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) )
64 fconst6g ( 𝑋𝐵 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 )
65 8 64 syl ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 )
66 1 fvexi 𝐵 ∈ V
67 elmapg ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑁 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) )
68 66 38 67 sylancr ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) )
69 65 68 mpbird ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
70 1 7 ringvcl ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) ∧ 𝑌 ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
71 2 69 9 70 syl3anc ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
72 71 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵m ( 𝑀 × 𝑁 ) ) )
73 3 1 7 12 56 13 57 72 59 34 60 mamufv ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) )
74 df-ov ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ ⟨ 𝑖 , 𝑘 ⟩ )
75 opelxpi ( ( 𝑖𝑀𝑘𝑂 ) → ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝑀 × 𝑂 ) )
76 75 adantl ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝑀 × 𝑂 ) )
77 xpfi ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin )
78 4 6 77 syl2anc ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin )
79 78 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin )
80 1 2 3 4 5 6 9 10 mamucl ( 𝜑 → ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) )
81 elmapi ( ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 )
82 ffn ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) )
83 80 81 82 3syl ( 𝜑 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) )
84 83 adantr ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) )
85 df-ov ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑌 𝐹 𝑍 ) ‘ ⟨ 𝑖 , 𝑘 ⟩ )
86 85 eqcomi ( ( 𝑌 𝐹 𝑍 ) ‘ ⟨ 𝑖 , 𝑘 ⟩ ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 )
87 86 a1i ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑌 𝐹 𝑍 ) ‘ ⟨ 𝑖 , 𝑘 ⟩ ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) )
88 79 14 84 87 ofc1 ( ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) ∧ ⟨ 𝑖 , 𝑘 ⟩ ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ ⟨ 𝑖 , 𝑘 ⟩ ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) )
89 76 88 mpdan ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ ⟨ 𝑖 , 𝑘 ⟩ ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) )
90 74 89 eqtrid ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) )
91 63 73 90 3eqtr4d ( ( 𝜑 ∧ ( 𝑖𝑀𝑘𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) )
92 91 ralrimivva ( 𝜑 → ∀ 𝑖𝑀𝑘𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) )
93 1 2 3 4 5 6 71 10 mamucl ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) )
94 elmapi ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 )
95 ffn ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) )
96 93 94 95 3syl ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) )
97 fconst6g ( 𝑋𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 )
98 8 97 syl ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 )
99 elmapg ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) )
100 66 78 99 sylancr ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) )
101 98 100 mpbird ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) )
102 1 7 ringvcl ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) )
103 2 101 80 102 syl3anc ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) )
104 elmapi ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 )
105 ffn ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) )
106 103 104 105 3syl ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) )
107 eqfnov2 ( ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖𝑀𝑘𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) )
108 96 106 107 syl2anc ( 𝜑 → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖𝑀𝑘𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) )
109 92 108 mpbird ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) )