Step |
Hyp |
Ref |
Expression |
1 |
|
mamucl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
mamucl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
3 |
|
mamudi.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) |
4 |
|
mamudi.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
5 |
|
mamudi.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
6 |
|
mamudi.o |
⊢ ( 𝜑 → 𝑂 ∈ Fin ) |
7 |
|
mamuvs1.t |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mamuvs1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
mamuvs1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
10 |
|
mamuvs1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ 𝐵 ) |
15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
16 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
17 |
9 16
|
syl |
⊢ ( 𝜑 → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
19 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
21 |
18 19 20
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ) |
22 |
|
elmapi |
⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
23 |
10 22
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
25 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) |
26 |
24 20 25
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
27 |
1 7 15 21 26
|
ringcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
28 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) |
29 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) |
30 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
31 |
28 13 29 30
|
fsuppmptdm |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
32 |
1 11 7 12 13 14 27 31
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
33 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) |
34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) |
35 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
36 |
34 35
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
37 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
38 |
4 5 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ Fin ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
40 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐵 ) |
41 |
|
ffn |
⊢ ( 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
42 |
9 16 41
|
3syl |
⊢ ( 𝜑 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
44 |
|
df-ov |
⊢ ( 𝑖 𝑌 𝑗 ) = ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) |
45 |
44
|
eqcomi |
⊢ ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) |
46 |
45
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) ) |
47 |
39 40 43 46
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
48 |
36 47
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
49 |
33 48
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
50 |
49
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) ) |
51 |
1 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
52 |
15 40 21 26 51
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
53 |
50 52
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
54 |
53
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
55 |
54
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
56 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
58 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
59 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
60 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) |
61 |
3 1 7 12 56 13 57 58 59 34 60
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
62 |
61
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
63 |
32 55 62
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
64 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
65 |
8 64
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
66 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
67 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑁 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
68 |
66 38 67
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
69 |
65 68
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
70 |
1 7
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ∧ 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
71 |
2 69 9 70
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
73 |
3 1 7 12 56 13 57 72 59 34 60
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
74 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) |
75 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
77 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
78 |
4 6 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
80 |
1 2 3 4 5 6 9 10
|
mamucl |
⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
81 |
|
elmapi |
⊢ ( ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
82 |
|
ffn |
⊢ ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
83 |
80 81 82
|
3syl |
⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
85 |
|
df-ov |
⊢ ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) |
86 |
85
|
eqcomi |
⊢ ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) |
87 |
86
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) |
88 |
79 14 84 87
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
89 |
76 88
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
90 |
74 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
91 |
63 73 90
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
92 |
91
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
93 |
1 2 3 4 5 6 71 10
|
mamucl |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
94 |
|
elmapi |
⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
95 |
|
ffn |
⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
96 |
93 94 95
|
3syl |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
97 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
98 |
8 97
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
99 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
100 |
66 78 99
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
101 |
98 100
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
102 |
1 7
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
103 |
2 101 80 102
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
104 |
|
elmapi |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
105 |
|
ffn |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
106 |
103 104 105
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
107 |
|
eqfnov2 |
⊢ ( ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
108 |
96 106 107
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
109 |
92 108
|
mpbird |
⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ) |