| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamuvs2.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 2 |  | mamuvs2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mamuvs2.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | mamuvs2.f | ⊢ 𝐹  =  ( 𝑅  maMul  〈 𝑀 ,  𝑁 ,  𝑂 〉 ) | 
						
							| 5 |  | mamuvs2.m | ⊢ ( 𝜑  →  𝑀  ∈  Fin ) | 
						
							| 6 |  | mamuvs2.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 7 |  | mamuvs2.o | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 8 |  | mamuvs2.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 9 |  | mamuvs2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 10 |  | mamuvs2.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 11 |  | df-ov | ⊢ ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 )  =  ( ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 13 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  𝑂 ) | 
						
							| 14 |  | opelxpi | ⊢ ( ( 𝑗  ∈  𝑁  ∧  𝑘  ∈  𝑂 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) | 
						
							| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) ) | 
						
							| 16 |  | xpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( 𝑁  ×  𝑂 )  ∈  Fin ) | 
						
							| 17 | 6 7 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ×  𝑂 )  ∈  Fin ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑁  ×  𝑂 )  ∈  Fin ) | 
						
							| 19 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  𝐵 ) | 
						
							| 20 |  | elmapi | ⊢ ( 𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 21 |  | ffn | ⊢ ( 𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵  →  𝑍  Fn  ( 𝑁  ×  𝑂 ) ) | 
						
							| 22 | 10 20 21 | 3syl | ⊢ ( 𝜑  →  𝑍  Fn  ( 𝑁  ×  𝑂 ) ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑍  Fn  ( 𝑁  ×  𝑂 ) ) | 
						
							| 24 |  | df-ov | ⊢ ( 𝑗 𝑍 𝑘 )  =  ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 25 | 24 | eqcomi | ⊢ ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 )  =  ( 𝑗 𝑍 𝑘 ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  ∧  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) )  →  ( 𝑍 ‘ 〈 𝑗 ,  𝑘 〉 )  =  ( 𝑗 𝑍 𝑘 ) ) | 
						
							| 27 | 18 19 23 26 | ofc1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  ∧  〈 𝑗 ,  𝑘 〉  ∈  ( 𝑁  ×  𝑂 ) )  →  ( ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ‘ 〈 𝑗 ,  𝑘 〉 )  =  ( 𝑌  ·  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 28 | 15 27 | mpdan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ‘ 〈 𝑗 ,  𝑘 〉 )  =  ( 𝑌  ·  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 29 | 11 28 | eqtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 )  =  ( 𝑌  ·  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 ) )  =  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑌  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 32 | 31 | crngmgp | ⊢ ( 𝑅  ∈  CRing  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 33 | 1 32 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 35 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 36 | 8 35 | syl | ⊢ ( 𝜑  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑋 : ( 𝑀  ×  𝑁 ) ⟶ 𝐵 ) | 
						
							| 38 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑀 ) | 
						
							| 39 | 37 38 12 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑋 𝑗 )  ∈  𝐵 ) | 
						
							| 40 | 10 20 | syl | ⊢ ( 𝜑  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑍 : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 42 | 41 12 13 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) | 
						
							| 43 | 31 2 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 44 | 31 3 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 45 | 43 44 | cmn12 | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  CMnd  ∧  ( ( 𝑖 𝑋 𝑗 )  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑗 𝑍 𝑘 )  ∈  𝐵 ) )  →  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑌  ·  ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑌  ·  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 46 | 34 39 19 42 45 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑌  ·  ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑌  ·  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 47 | 30 46 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 ) )  =  ( 𝑌  ·  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) | 
						
							| 48 | 47 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( 𝑌  ·  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 ) ) ) )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( 𝑌  ·  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 51 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 52 | 1 51 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  Ring ) | 
						
							| 54 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑁  ∈  Fin ) | 
						
							| 55 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 56 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 57 | 2 3 56 39 42 | ringcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) )  ∈  𝐵 ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) )  =  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) | 
						
							| 59 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) )  ∈  V ) | 
						
							| 60 |  | fvexd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 61 | 58 54 59 60 | fsuppmptdm | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 62 | 2 50 3 53 54 55 57 61 | gsummulc2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( 𝑌  ·  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) )  =  ( 𝑌  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 63 | 49 62 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 ) ) ) )  =  ( 𝑌  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 64 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑅  ∈  CRing ) | 
						
							| 65 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑀  ∈  Fin ) | 
						
							| 66 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑂  ∈  Fin ) | 
						
							| 67 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑁 ) ) ) | 
						
							| 68 |  | fconst6g | ⊢ ( 𝑌  ∈  𝐵  →  ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 69 | 9 68 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 70 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 71 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝑁  ×  𝑂 )  ∈  Fin )  →  ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  ↔  ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) ) | 
						
							| 72 | 70 17 71 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  ↔  ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑁  ×  𝑂 ) ⟶ 𝐵 ) ) | 
						
							| 73 | 69 72 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 74 | 2 3 | ringvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) )  ∧  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) )  →  ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 75 | 52 73 10 74 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 77 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑖  ∈  𝑀 ) | 
						
							| 78 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑘  ∈  𝑂 ) | 
						
							| 79 | 4 2 3 64 65 54 66 67 76 77 78 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) 𝑘 ) ) ) ) ) | 
						
							| 80 |  | df-ov | ⊢ ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) 𝑘 )  =  ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 81 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) ) | 
						
							| 83 |  | xpfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  𝑂  ∈  Fin )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 84 | 5 7 83 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑀  ×  𝑂 )  ∈  Fin ) | 
						
							| 86 | 2 52 4 5 6 7 8 10 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 87 |  | elmapi | ⊢ ( ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑋 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 88 |  | ffn | ⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 89 | 86 87 88 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑋 𝐹 𝑍 )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 91 |  | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  =  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 ) | 
						
							| 92 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑂 ) ) ) | 
						
							| 93 | 4 2 3 64 65 54 66 67 92 77 78 | mamufv | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 94 | 91 93 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) | 
						
							| 96 | 85 55 90 95 | ofc1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  ∧  〈 𝑖 ,  𝑘 〉  ∈  ( 𝑀  ×  𝑂 ) )  →  ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑌  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 97 | 82 96 | mpdan | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 ,  𝑘 〉 )  =  ( 𝑌  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 98 | 80 97 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) 𝑘 )  =  ( 𝑌  ·  ( 𝑅  Σg  ( 𝑗  ∈  𝑁  ↦  ( ( 𝑖 𝑋 𝑗 )  ·  ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) | 
						
							| 99 | 63 79 98 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑀  ∧  𝑘  ∈  𝑂 ) )  →  ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 100 | 99 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) | 
						
							| 101 | 2 52 4 5 6 7 8 75 | mamucl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 102 |  | elmapi | ⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 103 |  | ffn | ⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 104 | 101 102 103 | 3syl | ⊢ ( 𝜑  →  ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 105 |  | fconst6g | ⊢ ( 𝑌  ∈  𝐵  →  ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 106 | 9 105 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 107 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝑀  ×  𝑂 )  ∈  Fin )  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ↔  ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) ) | 
						
							| 108 | 70 84 107 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ↔  ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) ) | 
						
							| 109 | 106 108 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 110 | 2 3 | ringvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  ∧  ( 𝑋 𝐹 𝑍 )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) )  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 111 | 52 109 86 110 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) ) ) | 
						
							| 112 |  | elmapi | ⊢ ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  ∈  ( 𝐵  ↑m  ( 𝑀  ×  𝑂 ) )  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵 ) | 
						
							| 113 |  | ffn | ⊢ ( ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀  ×  𝑂 ) ⟶ 𝐵  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 114 | 111 112 113 | 3syl | ⊢ ( 𝜑  →  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) ) | 
						
							| 115 |  | eqfnov2 | ⊢ ( ( ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  Fn  ( 𝑀  ×  𝑂 )  ∧  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  Fn  ( 𝑀  ×  𝑂 ) )  →  ( ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  =  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 116 | 104 114 115 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  =  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) )  ↔  ∀ 𝑖  ∈  𝑀 ∀ 𝑘  ∈  𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) ) 𝑘 )  =  ( 𝑖 ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) | 
						
							| 117 | 100 116 | mpbird | ⊢ ( 𝜑  →  ( 𝑋 𝐹 ( ( ( 𝑁  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  𝑍 ) )  =  ( ( ( 𝑀  ×  𝑂 )  ×  { 𝑌 } )  ∘f   ·  ( 𝑋 𝐹 𝑍 ) ) ) |