Step |
Hyp |
Ref |
Expression |
1 |
|
mamuvs2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
2 |
|
mamuvs2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
mamuvs2.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
mamuvs2.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) |
5 |
|
mamuvs2.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
6 |
|
mamuvs2.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
7 |
|
mamuvs2.o |
⊢ ( 𝜑 → 𝑂 ∈ Fin ) |
8 |
|
mamuvs2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
9 |
|
mamuvs2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
mamuvs2.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
11 |
|
df-ov |
⊢ ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) = ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) |
14 |
|
opelxpi |
⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
16 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑁 × 𝑂 ) ∈ Fin ) |
17 |
6 7 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 × 𝑂 ) ∈ Fin ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑁 × 𝑂 ) ∈ Fin ) |
19 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) |
20 |
|
elmapi |
⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
21 |
|
ffn |
⊢ ( 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
22 |
10 20 21
|
3syl |
⊢ ( 𝜑 → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
24 |
|
df-ov |
⊢ ( 𝑗 𝑍 𝑘 ) = ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) |
25 |
24
|
eqcomi |
⊢ ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑗 𝑍 𝑘 ) |
26 |
25
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) → ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑗 𝑍 𝑘 ) ) |
27 |
18 19 23 26
|
ofc1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) → ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
28 |
15 27
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
29 |
11 28
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) ) |
31 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
32 |
31
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
33 |
1 32
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
35 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
36 |
8 35
|
syl |
⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
38 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) |
39 |
37 38 12
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ) |
40 |
10 20
|
syl |
⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
42 |
41 12 13
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
43 |
31 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
44 |
31 3
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
45 |
43 44
|
cmn12 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
46 |
34 39 19 42 45
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
47 |
30 46
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
48 |
47
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
49 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
51 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
52 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
53 |
1 52
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
55 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
56 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ 𝐵 ) |
57 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
58 |
2 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
59 |
57 39 42 58
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
60 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) |
61 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) |
62 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
63 |
60 55 61 62
|
fsuppmptdm |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
64 |
2 50 51 3 54 55 56 59 63
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
65 |
49 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
66 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ CRing ) |
67 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
68 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
69 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
70 |
|
fconst6g |
⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
71 |
9 70
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
72 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
73 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑁 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ↔ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) ) |
74 |
72 17 73
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ↔ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) ) |
75 |
71 74
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
76 |
2 3
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ∧ 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
77 |
53 75 10 76
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
79 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) |
80 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) |
81 |
4 2 3 66 67 55 68 69 78 79 80
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) ) |
82 |
|
df-ov |
⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) |
83 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
85 |
|
xpfi |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
86 |
5 7 85
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
88 |
2 53 4 5 6 7 8 10
|
mamucl |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
89 |
|
elmapi |
⊢ ( ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
90 |
|
ffn |
⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
91 |
88 89 90
|
3syl |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
93 |
|
df-ov |
⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) |
94 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
95 |
4 2 3 66 67 55 68 69 94 79 80
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
96 |
93 95
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
98 |
87 56 92 97
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
99 |
84 98
|
mpdan |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
100 |
82 99
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
101 |
65 81 100
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
102 |
101
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
103 |
2 53 4 5 6 7 8 77
|
mamucl |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
104 |
|
elmapi |
⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
105 |
|
ffn |
⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
106 |
103 104 105
|
3syl |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
107 |
|
fconst6g |
⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
108 |
9 107
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
109 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
110 |
72 86 109
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
111 |
108 110
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
112 |
2 3
|
ringvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
113 |
53 111 88 112
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
114 |
|
elmapi |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
115 |
|
ffn |
⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
116 |
113 114 115
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
117 |
|
eqfnov2 |
⊢ ( ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) |
118 |
106 116 117
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) |
119 |
102 118
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ) |