Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | map0b | ⊢ ( 𝐴 ≠ ∅ → ( ∅ ↑m 𝐴 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi | ⊢ ( 𝑓 ∈ ( ∅ ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ ∅ ) | |
2 | fdm | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → dom 𝑓 = 𝐴 ) | |
3 | frn | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → ran 𝑓 ⊆ ∅ ) | |
4 | ss0 | ⊢ ( ran 𝑓 ⊆ ∅ → ran 𝑓 = ∅ ) | |
5 | 3 4 | syl | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → ran 𝑓 = ∅ ) |
6 | dm0rn0 | ⊢ ( dom 𝑓 = ∅ ↔ ran 𝑓 = ∅ ) | |
7 | 5 6 | sylibr | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → dom 𝑓 = ∅ ) |
8 | 2 7 | eqtr3d | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → 𝐴 = ∅ ) |
9 | 1 8 | syl | ⊢ ( 𝑓 ∈ ( ∅ ↑m 𝐴 ) → 𝐴 = ∅ ) |
10 | 9 | necon3ai | ⊢ ( 𝐴 ≠ ∅ → ¬ 𝑓 ∈ ( ∅ ↑m 𝐴 ) ) |
11 | 10 | eq0rdv | ⊢ ( 𝐴 ≠ ∅ → ( ∅ ↑m 𝐴 ) = ∅ ) |