Metamath Proof Explorer


Theorem map0g

Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of Suppes p. 89. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion map0g ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴m 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑓 𝑓𝐴 )
2 fconst6g ( 𝑓𝐴 → ( 𝐵 × { 𝑓 } ) : 𝐵𝐴 )
3 elmapg ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴m 𝐵 ) ↔ ( 𝐵 × { 𝑓 } ) : 𝐵𝐴 ) )
4 2 3 syl5ibr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑓𝐴 → ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴m 𝐵 ) ) )
5 ne0i ( ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴m 𝐵 ) → ( 𝐴m 𝐵 ) ≠ ∅ )
6 4 5 syl6 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑓𝐴 → ( 𝐴m 𝐵 ) ≠ ∅ ) )
7 6 exlimdv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑓 𝑓𝐴 → ( 𝐴m 𝐵 ) ≠ ∅ ) )
8 1 7 syl5bi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ≠ ∅ → ( 𝐴m 𝐵 ) ≠ ∅ ) )
9 8 necon4d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴m 𝐵 ) = ∅ → 𝐴 = ∅ ) )
10 f0 ∅ : ∅ ⟶ 𝐴
11 feq2 ( 𝐵 = ∅ → ( ∅ : 𝐵𝐴 ↔ ∅ : ∅ ⟶ 𝐴 ) )
12 10 11 mpbiri ( 𝐵 = ∅ → ∅ : 𝐵𝐴 )
13 elmapg ( ( 𝐴𝑉𝐵𝑊 ) → ( ∅ ∈ ( 𝐴m 𝐵 ) ↔ ∅ : 𝐵𝐴 ) )
14 12 13 syl5ibr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 = ∅ → ∅ ∈ ( 𝐴m 𝐵 ) ) )
15 ne0i ( ∅ ∈ ( 𝐴m 𝐵 ) → ( 𝐴m 𝐵 ) ≠ ∅ )
16 14 15 syl6 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 = ∅ → ( 𝐴m 𝐵 ) ≠ ∅ ) )
17 16 necon2d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴m 𝐵 ) = ∅ → 𝐵 ≠ ∅ ) )
18 9 17 jcad ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴m 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) )
19 oveq1 ( 𝐴 = ∅ → ( 𝐴m 𝐵 ) = ( ∅ ↑m 𝐵 ) )
20 map0b ( 𝐵 ≠ ∅ → ( ∅ ↑m 𝐵 ) = ∅ )
21 19 20 sylan9eq ( ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴m 𝐵 ) = ∅ )
22 18 21 impbid1 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴m 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) )