Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ 𝐴 ) |
2 |
|
fconst6g |
⊢ ( 𝑓 ∈ 𝐴 → ( 𝐵 × { 𝑓 } ) : 𝐵 ⟶ 𝐴 ) |
3 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴 ↑m 𝐵 ) ↔ ( 𝐵 × { 𝑓 } ) : 𝐵 ⟶ 𝐴 ) ) |
4 |
2 3
|
syl5ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝐴 → ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴 ↑m 𝐵 ) ) ) |
5 |
|
ne0i |
⊢ ( ( 𝐵 × { 𝑓 } ) ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) |
6 |
4 5
|
syl6 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑓 ∈ 𝐴 → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
7 |
6
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑓 𝑓 ∈ 𝐴 → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
8 |
1 7
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ ∅ → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
9 |
8
|
necon4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ → 𝐴 = ∅ ) ) |
10 |
|
f0 |
⊢ ∅ : ∅ ⟶ 𝐴 |
11 |
|
feq2 |
⊢ ( 𝐵 = ∅ → ( ∅ : 𝐵 ⟶ 𝐴 ↔ ∅ : ∅ ⟶ 𝐴 ) ) |
12 |
10 11
|
mpbiri |
⊢ ( 𝐵 = ∅ → ∅ : 𝐵 ⟶ 𝐴 ) |
13 |
|
elmapg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∅ ∈ ( 𝐴 ↑m 𝐵 ) ↔ ∅ : 𝐵 ⟶ 𝐴 ) ) |
14 |
12 13
|
syl5ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 = ∅ → ∅ ∈ ( 𝐴 ↑m 𝐵 ) ) ) |
15 |
|
ne0i |
⊢ ( ∅ ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) |
16 |
14 15
|
syl6 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 = ∅ → ( 𝐴 ↑m 𝐵 ) ≠ ∅ ) ) |
17 |
16
|
necon2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ → 𝐵 ≠ ∅ ) ) |
18 |
9 17
|
jcad |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑m 𝐵 ) = ( ∅ ↑m 𝐵 ) ) |
20 |
|
map0b |
⊢ ( 𝐵 ≠ ∅ → ( ∅ ↑m 𝐵 ) = ∅ ) |
21 |
19 20
|
sylan9eq |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) = ∅ ) |
22 |
18 21
|
impbid1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ↑m 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 ≠ ∅ ) ) ) |