| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 2 |  | df-pr | ⊢ { ∅ ,  1o }  =  ( { ∅ }  ∪  { 1o } ) | 
						
							| 3 | 1 2 | eqtri | ⊢ 2o  =  ( { ∅ }  ∪  { 1o } ) | 
						
							| 4 | 3 | oveq2i | ⊢ ( 𝐴  ↑m  2o )  =  ( 𝐴  ↑m  ( { ∅ }  ∪  { 1o } ) ) | 
						
							| 5 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  { ∅ }  ∈  V ) | 
						
							| 7 |  | snex | ⊢ { 1o }  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  { 1o }  ∈  V ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 10 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 11 | 10 | neii | ⊢ ¬  1o  =  ∅ | 
						
							| 12 |  | elsni | ⊢ ( 1o  ∈  { ∅ }  →  1o  =  ∅ ) | 
						
							| 13 | 11 12 | mto | ⊢ ¬  1o  ∈  { ∅ } | 
						
							| 14 |  | disjsn | ⊢ ( ( { ∅ }  ∩  { 1o } )  =  ∅  ↔  ¬  1o  ∈  { ∅ } ) | 
						
							| 15 | 13 14 | mpbir | ⊢ ( { ∅ }  ∩  { 1o } )  =  ∅ | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( { ∅ }  ∩  { 1o } )  =  ∅ ) | 
						
							| 17 |  | mapunen | ⊢ ( ( ( { ∅ }  ∈  V  ∧  { 1o }  ∈  V  ∧  𝐴  ∈  𝑉 )  ∧  ( { ∅ }  ∩  { 1o } )  =  ∅ )  →  ( 𝐴  ↑m  ( { ∅ }  ∪  { 1o } ) )  ≈  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) ) ) | 
						
							| 18 | 6 8 9 16 17 | syl31anc | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ↑m  ( { ∅ }  ∪  { 1o } ) )  ≈  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) ) ) | 
						
							| 19 | 4 18 | eqbrtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ↑m  2o )  ≈  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) ) ) | 
						
							| 20 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ∅  ∈  V ) | 
						
							| 22 | 9 21 | mapsnend | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ↑m  { ∅ } )  ≈  𝐴 ) | 
						
							| 23 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  1o  ∈  V ) | 
						
							| 25 | 9 24 | mapsnend | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ↑m  { 1o } )  ≈  𝐴 ) | 
						
							| 26 |  | xpen | ⊢ ( ( ( 𝐴  ↑m  { ∅ } )  ≈  𝐴  ∧  ( 𝐴  ↑m  { 1o } )  ≈  𝐴 )  →  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) )  ≈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 27 | 22 25 26 | syl2anc | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) )  ≈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 28 |  | entr | ⊢ ( ( ( 𝐴  ↑m  2o )  ≈  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) )  ∧  ( ( 𝐴  ↑m  { ∅ } )  ×  ( 𝐴  ↑m  { 1o } ) )  ≈  ( 𝐴  ×  𝐴 ) )  →  ( 𝐴  ↑m  2o )  ≈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 29 | 19 27 28 | syl2anc | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ↑m  2o )  ≈  ( 𝐴  ×  𝐴 ) ) |