Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020) (Proof shortened by Thierry Arnoux, 3-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapdm0 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ↑m ∅ ) = { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | elmapg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑓 ∈ ( 𝐵 ↑m ∅ ) ↔ 𝑓 : ∅ ⟶ 𝐵 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 ∈ ( 𝐵 ↑m ∅ ) ↔ 𝑓 : ∅ ⟶ 𝐵 ) ) |
| 4 | f0bi | ⊢ ( 𝑓 : ∅ ⟶ 𝐵 ↔ 𝑓 = ∅ ) | |
| 5 | 3 4 | bitrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 ∈ ( 𝐵 ↑m ∅ ) ↔ 𝑓 = ∅ ) ) |
| 6 | velsn | ⊢ ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 ∈ ( 𝐵 ↑m ∅ ) ↔ 𝑓 ∈ { ∅ } ) ) |
| 8 | 7 | eqrdv | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ↑m ∅ ) = { ∅ } ) |