Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
⊢ Rel ≼ |
2 |
1
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
3 |
|
domeng |
⊢ ( 𝐵 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ≼ 𝐵 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
5 |
4
|
ibi |
⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) → ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝐴 ≈ 𝑥 ) |
8 |
|
enrefg |
⊢ ( 𝐶 ∈ V → 𝐶 ≈ 𝐶 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) → 𝐶 ≈ 𝐶 ) |
10 |
|
mapen |
⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝐶 ≈ 𝐶 ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝑥 ↑m 𝐶 ) ) |
11 |
7 9 10
|
syl2anr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝐴 ↑m 𝐶 ) ≈ ( 𝑥 ↑m 𝐶 ) ) |
12 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐶 ) ∈ V |
13 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → 𝐵 ∈ V ) |
14 |
|
simprr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → 𝑥 ⊆ 𝐵 ) |
15 |
|
mapss |
⊢ ( ( 𝐵 ∈ V ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑥 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝑥 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) ) |
17 |
|
ssdomg |
⊢ ( ( 𝐵 ↑m 𝐶 ) ∈ V → ( ( 𝑥 ↑m 𝐶 ) ⊆ ( 𝐵 ↑m 𝐶 ) → ( 𝑥 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) ) |
18 |
12 16 17
|
mpsyl |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝑥 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
19 |
|
endomtr |
⊢ ( ( ( 𝐴 ↑m 𝐶 ) ≈ ( 𝑥 ↑m 𝐶 ) ∧ ( 𝑥 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
20 |
11 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
21 |
6 20
|
exlimddv |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
22 |
|
elmapex |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) |
23 |
22
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) → 𝐶 ∈ V ) |
24 |
23
|
con3i |
⊢ ( ¬ 𝐶 ∈ V → ¬ 𝑥 ∈ ( 𝐴 ↑m 𝐶 ) ) |
25 |
24
|
eq0rdv |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐴 ↑m 𝐶 ) = ∅ ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V ) → ( 𝐴 ↑m 𝐶 ) = ∅ ) |
27 |
12
|
0dom |
⊢ ∅ ≼ ( 𝐵 ↑m 𝐶 ) |
28 |
26 27
|
eqbrtrdi |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V ) → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |
29 |
21 28
|
pm2.61dan |
⊢ ( 𝐴 ≼ 𝐵 → ( 𝐴 ↑m 𝐶 ) ≼ ( 𝐵 ↑m 𝐶 ) ) |