Metamath Proof Explorer


Theorem mapdom1

Description: Order-preserving property of set exponentiation. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 9-Mar-2013)

Ref Expression
Assertion mapdom1 ( 𝐴𝐵 → ( 𝐴m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex2i ( 𝐴𝐵𝐵 ∈ V )
3 domeng ( 𝐵 ∈ V → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )
4 2 3 syl ( 𝐴𝐵 → ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) ) )
5 4 ibi ( 𝐴𝐵 → ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )
6 5 adantr ( ( 𝐴𝐵𝐶 ∈ V ) → ∃ 𝑥 ( 𝐴𝑥𝑥𝐵 ) )
7 simpl ( ( 𝐴𝑥𝑥𝐵 ) → 𝐴𝑥 )
8 enrefg ( 𝐶 ∈ V → 𝐶𝐶 )
9 8 adantl ( ( 𝐴𝐵𝐶 ∈ V ) → 𝐶𝐶 )
10 mapen ( ( 𝐴𝑥𝐶𝐶 ) → ( 𝐴m 𝐶 ) ≈ ( 𝑥m 𝐶 ) )
11 7 9 10 syl2anr ( ( ( 𝐴𝐵𝐶 ∈ V ) ∧ ( 𝐴𝑥𝑥𝐵 ) ) → ( 𝐴m 𝐶 ) ≈ ( 𝑥m 𝐶 ) )
12 ovex ( 𝐵m 𝐶 ) ∈ V
13 2 ad2antrr ( ( ( 𝐴𝐵𝐶 ∈ V ) ∧ ( 𝐴𝑥𝑥𝐵 ) ) → 𝐵 ∈ V )
14 simprr ( ( ( 𝐴𝐵𝐶 ∈ V ) ∧ ( 𝐴𝑥𝑥𝐵 ) ) → 𝑥𝐵 )
15 mapss ( ( 𝐵 ∈ V ∧ 𝑥𝐵 ) → ( 𝑥m 𝐶 ) ⊆ ( 𝐵m 𝐶 ) )
16 13 14 15 syl2anc ( ( ( 𝐴𝐵𝐶 ∈ V ) ∧ ( 𝐴𝑥𝑥𝐵 ) ) → ( 𝑥m 𝐶 ) ⊆ ( 𝐵m 𝐶 ) )
17 ssdomg ( ( 𝐵m 𝐶 ) ∈ V → ( ( 𝑥m 𝐶 ) ⊆ ( 𝐵m 𝐶 ) → ( 𝑥m 𝐶 ) ≼ ( 𝐵m 𝐶 ) ) )
18 12 16 17 mpsyl ( ( ( 𝐴𝐵𝐶 ∈ V ) ∧ ( 𝐴𝑥𝑥𝐵 ) ) → ( 𝑥m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )
19 endomtr ( ( ( 𝐴m 𝐶 ) ≈ ( 𝑥m 𝐶 ) ∧ ( 𝑥m 𝐶 ) ≼ ( 𝐵m 𝐶 ) ) → ( 𝐴m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )
20 11 18 19 syl2anc ( ( ( 𝐴𝐵𝐶 ∈ V ) ∧ ( 𝐴𝑥𝑥𝐵 ) ) → ( 𝐴m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )
21 6 20 exlimddv ( ( 𝐴𝐵𝐶 ∈ V ) → ( 𝐴m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )
22 elmapex ( 𝑥 ∈ ( 𝐴m 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) )
23 22 simprd ( 𝑥 ∈ ( 𝐴m 𝐶 ) → 𝐶 ∈ V )
24 23 con3i ( ¬ 𝐶 ∈ V → ¬ 𝑥 ∈ ( 𝐴m 𝐶 ) )
25 24 eq0rdv ( ¬ 𝐶 ∈ V → ( 𝐴m 𝐶 ) = ∅ )
26 25 adantl ( ( 𝐴𝐵 ∧ ¬ 𝐶 ∈ V ) → ( 𝐴m 𝐶 ) = ∅ )
27 12 0dom ∅ ≼ ( 𝐵m 𝐶 )
28 26 27 eqbrtrdi ( ( 𝐴𝐵 ∧ ¬ 𝐶 ∈ V ) → ( 𝐴m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )
29 21 28 pm2.61dan ( 𝐴𝐵 → ( 𝐴m 𝐶 ) ≼ ( 𝐵m 𝐶 ) )