| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  𝐶  =  ∅ ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐶  ↑m  𝐴 )  =  ( ∅  ↑m  𝐴 ) ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) ) | 
						
							| 4 |  | idd | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐴  =  ∅  →  𝐴  =  ∅ ) ) | 
						
							| 5 | 4 1 | jctird | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐴  =  ∅  →  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) ) ) | 
						
							| 6 | 3 5 | mtod | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ¬  𝐴  =  ∅ ) | 
						
							| 7 | 6 | neqned | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 8 |  | map0b | ⊢ ( 𝐴  ≠  ∅  →  ( ∅  ↑m  𝐴 )  =  ∅ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( ∅  ↑m  𝐴 )  =  ∅ ) | 
						
							| 10 | 2 9 | eqtrd | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐶  ↑m  𝐴 )  =  ∅ ) | 
						
							| 11 |  | ovex | ⊢ ( 𝐶  ↑m  𝐵 )  ∈  V | 
						
							| 12 | 11 | 0dom | ⊢ ∅  ≼  ( 𝐶  ↑m  𝐵 ) | 
						
							| 13 | 10 12 | eqbrtrdi | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  𝐴  ≼  𝐵 ) | 
						
							| 15 |  | reldom | ⊢ Rel   ≼ | 
						
							| 16 | 15 | brrelex2i | ⊢ ( 𝐴  ≼  𝐵  →  𝐵  ∈  V ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  𝐵  ∈  V ) | 
						
							| 18 |  | domeng | ⊢ ( 𝐵  ∈  V  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) ) | 
						
							| 20 | 14 19 | mpbid | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) | 
						
							| 21 |  | enrefg | ⊢ ( 𝐶  ∈  V  →  𝐶  ≈  𝐶 ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐶  ≈  𝐶 ) | 
						
							| 23 |  | simprrl | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐴  ≈  𝑥 ) | 
						
							| 24 |  | mapen | ⊢ ( ( 𝐶  ≈  𝐶  ∧  𝐴  ≈  𝑥 )  →  ( 𝐶  ↑m  𝐴 )  ≈  ( 𝐶  ↑m  𝑥 ) ) | 
						
							| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝐴 )  ≈  ( 𝐶  ↑m  𝑥 ) ) | 
						
							| 26 |  | ovexd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝑥 )  ∈  V ) | 
						
							| 27 |  | ovexd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ∈  V ) | 
						
							| 28 |  | simprl | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐶  ≠  ∅ ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐶  ∈  V ) | 
						
							| 30 | 16 | ad2antrr | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐵  ∈  V ) | 
						
							| 31 | 30 | difexd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐵  ∖  𝑥 )  ∈  V ) | 
						
							| 32 |  | map0g | ⊢ ( ( 𝐶  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V )  →  ( ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  =  ∅  ↔  ( 𝐶  =  ∅  ∧  ( 𝐵  ∖  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝐶  =  ∅  ∧  ( 𝐵  ∖  𝑥 )  ≠  ∅ )  →  𝐶  =  ∅ ) | 
						
							| 34 | 32 33 | biimtrdi | ⊢ ( ( 𝐶  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V )  →  ( ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  =  ∅  →  𝐶  =  ∅ ) ) | 
						
							| 35 | 34 | necon3d | ⊢ ( ( 𝐶  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V )  →  ( 𝐶  ≠  ∅  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 36 | 29 31 35 | syl2anc | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ≠  ∅  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 37 | 28 36 | mpd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ ) | 
						
							| 38 |  | xpdom3 | ⊢ ( ( ( 𝐶  ↑m  𝑥 )  ∈  V  ∧  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ∈  V  ∧  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) ) | 
						
							| 39 | 26 27 37 38 | syl3anc | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) ) | 
						
							| 40 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 41 | 40 | a1i | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝑥  ∈  V ) | 
						
							| 42 |  | disjdif | ⊢ ( 𝑥  ∩  ( 𝐵  ∖  𝑥 ) )  =  ∅ | 
						
							| 43 | 42 | a1i | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝑥  ∩  ( 𝐵  ∖  𝑥 ) )  =  ∅ ) | 
						
							| 44 |  | mapunen | ⊢ ( ( ( 𝑥  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V  ∧  𝐶  ∈  V )  ∧  ( 𝑥  ∩  ( 𝐵  ∖  𝑥 ) )  =  ∅ )  →  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) ) | 
						
							| 45 | 41 31 29 43 44 | syl31anc | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) ) | 
						
							| 46 | 45 | ensymd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) ) ) | 
						
							| 47 |  | simprrr | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝑥  ⊆  𝐵 ) | 
						
							| 48 |  | undif | ⊢ ( 𝑥  ⊆  𝐵  ↔  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) )  =  𝐵 ) | 
						
							| 49 | 47 48 | sylib | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) )  =  𝐵 ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) )  =  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 51 | 46 50 | breqtrd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 52 |  | domentr | ⊢ ( ( ( 𝐶  ↑m  𝑥 )  ≼  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ∧  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( 𝐶  ↑m  𝐵 ) )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 53 | 39 51 52 | syl2anc | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 54 |  | endomtr | ⊢ ( ( ( 𝐶  ↑m  𝐴 )  ≈  ( 𝐶  ↑m  𝑥 )  ∧  ( 𝐶  ↑m  𝑥 )  ≼  ( 𝐶  ↑m  𝐵 ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 55 | 25 53 54 | syl2anc | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 56 | 55 | expr | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) ) | 
						
							| 57 | 56 | exlimdv | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) ) | 
						
							| 58 | 20 57 | mpd | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 59 | 58 | adantlr | ⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  ≠  ∅ )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 60 | 13 59 | pm2.61dane | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 61 | 60 | an32s | ⊢ ( ( ( 𝐴  ≼  𝐵  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  ∈  V )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 62 | 61 | ex | ⊢ ( ( 𝐴  ≼  𝐵  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐶  ∈  V  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) ) | 
						
							| 63 |  | reldmmap | ⊢ Rel  dom   ↑m | 
						
							| 64 | 63 | ovprc1 | ⊢ ( ¬  𝐶  ∈  V  →  ( 𝐶  ↑m  𝐴 )  =  ∅ ) | 
						
							| 65 | 64 12 | eqbrtrdi | ⊢ ( ¬  𝐶  ∈  V  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) | 
						
							| 66 | 62 65 | pm2.61d1 | ⊢ ( ( 𝐴  ≼  𝐵  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) |