Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → 𝐶 = ∅ ) |
2 |
1
|
oveq1d |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐶 ↑m 𝐴 ) = ( ∅ ↑m 𝐴 ) ) |
3 |
|
simplr |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) |
4 |
|
idd |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐴 = ∅ → 𝐴 = ∅ ) ) |
5 |
4 1
|
jctird |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐴 = ∅ → ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ) |
6 |
3 5
|
mtod |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ¬ 𝐴 = ∅ ) |
7 |
6
|
neqned |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → 𝐴 ≠ ∅ ) |
8 |
|
map0b |
⊢ ( 𝐴 ≠ ∅ → ( ∅ ↑m 𝐴 ) = ∅ ) |
9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( ∅ ↑m 𝐴 ) = ∅ ) |
10 |
2 9
|
eqtrd |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐶 ↑m 𝐴 ) = ∅ ) |
11 |
|
ovex |
⊢ ( 𝐶 ↑m 𝐵 ) ∈ V |
12 |
11
|
0dom |
⊢ ∅ ≼ ( 𝐶 ↑m 𝐵 ) |
13 |
10 12
|
eqbrtrdi |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 = ∅ ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → 𝐴 ≼ 𝐵 ) |
15 |
|
reldom |
⊢ Rel ≼ |
16 |
15
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → 𝐵 ∈ V ) |
18 |
|
domeng |
⊢ ( 𝐵 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
20 |
14 19
|
mpbid |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
21 |
|
enrefg |
⊢ ( 𝐶 ∈ V → 𝐶 ≈ 𝐶 ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐶 ≈ 𝐶 ) |
23 |
|
simprrl |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐴 ≈ 𝑥 ) |
24 |
|
mapen |
⊢ ( ( 𝐶 ≈ 𝐶 ∧ 𝐴 ≈ 𝑥 ) → ( 𝐶 ↑m 𝐴 ) ≈ ( 𝐶 ↑m 𝑥 ) ) |
25 |
22 23 24
|
syl2anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝐴 ) ≈ ( 𝐶 ↑m 𝑥 ) ) |
26 |
|
ovexd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝑥 ) ∈ V ) |
27 |
|
ovexd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ∈ V ) |
28 |
|
simprl |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐶 ≠ ∅ ) |
29 |
|
simplr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐶 ∈ V ) |
30 |
16
|
ad2antrr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝐵 ∈ V ) |
31 |
30
|
difexd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐵 ∖ 𝑥 ) ∈ V ) |
32 |
|
map0g |
⊢ ( ( 𝐶 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) = ∅ ↔ ( 𝐶 = ∅ ∧ ( 𝐵 ∖ 𝑥 ) ≠ ∅ ) ) ) |
33 |
|
simpl |
⊢ ( ( 𝐶 = ∅ ∧ ( 𝐵 ∖ 𝑥 ) ≠ ∅ ) → 𝐶 = ∅ ) |
34 |
32 33
|
syl6bi |
⊢ ( ( 𝐶 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) = ∅ → 𝐶 = ∅ ) ) |
35 |
34
|
necon3d |
⊢ ( ( 𝐶 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( 𝐶 ≠ ∅ → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) ) |
36 |
29 31 35
|
syl2anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ≠ ∅ → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) ) |
37 |
28 36
|
mpd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) |
38 |
|
xpdom3 |
⊢ ( ( ( 𝐶 ↑m 𝑥 ) ∈ V ∧ ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ∈ V ∧ ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ≠ ∅ ) → ( 𝐶 ↑m 𝑥 ) ≼ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) |
39 |
26 27 37 38
|
syl3anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝑥 ) ≼ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) |
40 |
|
vex |
⊢ 𝑥 ∈ V |
41 |
40
|
a1i |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝑥 ∈ V ) |
42 |
|
disjdif |
⊢ ( 𝑥 ∩ ( 𝐵 ∖ 𝑥 ) ) = ∅ |
43 |
42
|
a1i |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝑥 ∩ ( 𝐵 ∖ 𝑥 ) ) = ∅ ) |
44 |
|
mapunen |
⊢ ( ( ( 𝑥 ∈ V ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝑥 ∩ ( 𝐵 ∖ 𝑥 ) ) = ∅ ) → ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) |
45 |
41 31 29 43 44
|
syl31anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ) |
46 |
45
|
ensymd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) ) |
47 |
|
simprrr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → 𝑥 ⊆ 𝐵 ) |
48 |
|
undif |
⊢ ( 𝑥 ⊆ 𝐵 ↔ ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) = 𝐵 ) |
49 |
47 48
|
sylib |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) = 𝐵 ) |
50 |
49
|
oveq2d |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m ( 𝑥 ∪ ( 𝐵 ∖ 𝑥 ) ) ) = ( 𝐶 ↑m 𝐵 ) ) |
51 |
46 50
|
breqtrd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( 𝐶 ↑m 𝐵 ) ) |
52 |
|
domentr |
⊢ ( ( ( 𝐶 ↑m 𝑥 ) ≼ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ∧ ( ( 𝐶 ↑m 𝑥 ) × ( 𝐶 ↑m ( 𝐵 ∖ 𝑥 ) ) ) ≈ ( 𝐶 ↑m 𝐵 ) ) → ( 𝐶 ↑m 𝑥 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
53 |
39 51 52
|
syl2anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝑥 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
54 |
|
endomtr |
⊢ ( ( ( 𝐶 ↑m 𝐴 ) ≈ ( 𝐶 ↑m 𝑥 ) ∧ ( 𝐶 ↑m 𝑥 ) ≼ ( 𝐶 ↑m 𝐵 ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
55 |
25 53 54
|
syl2anc |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ( 𝐶 ≠ ∅ ∧ ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
56 |
55
|
expr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) ) |
57 |
56
|
exlimdv |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) ) |
58 |
20 57
|
mpd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ 𝐶 ≠ ∅ ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
59 |
58
|
adantlr |
⊢ ( ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 ≠ ∅ ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
60 |
13 59
|
pm2.61dane |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V ) ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
61 |
60
|
an32s |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) ∧ 𝐶 ∈ V ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
62 |
61
|
ex |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ∈ V → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) ) |
63 |
|
reldmmap |
⊢ Rel dom ↑m |
64 |
63
|
ovprc1 |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐶 ↑m 𝐴 ) = ∅ ) |
65 |
64 12
|
eqbrtrdi |
⊢ ( ¬ 𝐶 ∈ V → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |
66 |
62 65
|
pm2.61d1 |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ ¬ ( 𝐴 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐶 ↑m 𝐴 ) ≼ ( 𝐶 ↑m 𝐵 ) ) |