| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  𝐶  =  ∅ )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐶  ↑m  𝐴 )  =  ( ∅  ↑m  𝐴 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							idd | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐴  =  ∅  →  𝐴  =  ∅ ) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							jctird | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐴  =  ∅  →  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mtod | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ¬  𝐴  =  ∅ )  | 
						
						
							| 7 | 
							
								6
							 | 
							neqned | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  𝐴  ≠  ∅ )  | 
						
						
							| 8 | 
							
								
							 | 
							map0b | 
							⊢ ( 𝐴  ≠  ∅  →  ( ∅  ↑m  𝐴 )  =  ∅ )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( ∅  ↑m  𝐴 )  =  ∅ )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐶  ↑m  𝐴 )  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝐶  ↑m  𝐵 )  ∈  V  | 
						
						
							| 12 | 
							
								11
							 | 
							0dom | 
							⊢ ∅  ≼  ( 𝐶  ↑m  𝐵 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							eqbrtrdi | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  =  ∅ )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  𝐴  ≼  𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							reldom | 
							⊢ Rel   ≼   | 
						
						
							| 16 | 
							
								15
							 | 
							brrelex2i | 
							⊢ ( 𝐴  ≼  𝐵  →  𝐵  ∈  V )  | 
						
						
							| 17 | 
							
								16
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  𝐵  ∈  V )  | 
						
						
							| 18 | 
							
								
							 | 
							domeng | 
							⊢ ( 𝐵  ∈  V  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  | 
						
						
							| 20 | 
							
								14 19
							 | 
							mpbid | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							enrefg | 
							⊢ ( 𝐶  ∈  V  →  𝐶  ≈  𝐶 )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐶  ≈  𝐶 )  | 
						
						
							| 23 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐴  ≈  𝑥 )  | 
						
						
							| 24 | 
							
								
							 | 
							mapen | 
							⊢ ( ( 𝐶  ≈  𝐶  ∧  𝐴  ≈  𝑥 )  →  ( 𝐶  ↑m  𝐴 )  ≈  ( 𝐶  ↑m  𝑥 ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝐴 )  ≈  ( 𝐶  ↑m  𝑥 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝑥 )  ∈  V )  | 
						
						
							| 27 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ∈  V )  | 
						
						
							| 28 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐶  ≠  ∅ )  | 
						
						
							| 29 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐶  ∈  V )  | 
						
						
							| 30 | 
							
								16
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝐵  ∈  V )  | 
						
						
							| 31 | 
							
								30
							 | 
							difexd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐵  ∖  𝑥 )  ∈  V )  | 
						
						
							| 32 | 
							
								
							 | 
							map0g | 
							⊢ ( ( 𝐶  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V )  →  ( ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  =  ∅  ↔  ( 𝐶  =  ∅  ∧  ( 𝐵  ∖  𝑥 )  ≠  ∅ ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐶  =  ∅  ∧  ( 𝐵  ∖  𝑥 )  ≠  ∅ )  →  𝐶  =  ∅ )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							biimtrdi | 
							⊢ ( ( 𝐶  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V )  →  ( ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  =  ∅  →  𝐶  =  ∅ ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							necon3d | 
							⊢ ( ( 𝐶  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V )  →  ( 𝐶  ≠  ∅  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ ) )  | 
						
						
							| 36 | 
							
								29 31 35
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ≠  ∅  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ ) )  | 
						
						
							| 37 | 
							
								28 36
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ )  | 
						
						
							| 38 | 
							
								
							 | 
							xpdom3 | 
							⊢ ( ( ( 𝐶  ↑m  𝑥 )  ∈  V  ∧  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ∈  V  ∧  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) )  ≠  ∅ )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) )  | 
						
						
							| 39 | 
							
								26 27 37 38
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝑥  ∈  V )  | 
						
						
							| 42 | 
							
								
							 | 
							disjdif | 
							⊢ ( 𝑥  ∩  ( 𝐵  ∖  𝑥 ) )  =  ∅  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝑥  ∩  ( 𝐵  ∖  𝑥 ) )  =  ∅ )  | 
						
						
							| 44 | 
							
								
							 | 
							mapunen | 
							⊢ ( ( ( 𝑥  ∈  V  ∧  ( 𝐵  ∖  𝑥 )  ∈  V  ∧  𝐶  ∈  V )  ∧  ( 𝑥  ∩  ( 𝐵  ∖  𝑥 ) )  =  ∅ )  →  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) )  | 
						
						
							| 45 | 
							
								41 31 29 43 44
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							ensymd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  𝑥  ⊆  𝐵 )  | 
						
						
							| 48 | 
							
								
							 | 
							undif | 
							⊢ ( 𝑥  ⊆  𝐵  ↔  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) )  =  𝐵 )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							sylib | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) )  =  𝐵 )  | 
						
						
							| 50 | 
							
								49
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  ( 𝑥  ∪  ( 𝐵  ∖  𝑥 ) ) )  =  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							domentr | 
							⊢ ( ( ( 𝐶  ↑m  𝑥 )  ≼  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ∧  ( ( 𝐶  ↑m  𝑥 )  ×  ( 𝐶  ↑m  ( 𝐵  ∖  𝑥 ) ) )  ≈  ( 𝐶  ↑m  𝐵 ) )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 53 | 
							
								39 51 52
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝑥 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							endomtr | 
							⊢ ( ( ( 𝐶  ↑m  𝐴 )  ≈  ( 𝐶  ↑m  𝑥 )  ∧  ( 𝐶  ↑m  𝑥 )  ≼  ( 𝐶  ↑m  𝐵 ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 55 | 
							
								25 53 54
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ( 𝐶  ≠  ∅  ∧  ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 ) ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							expr | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							exlimdv | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( ∃ 𝑥 ( 𝐴  ≈  𝑥  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) )  | 
						
						
							| 58 | 
							
								20 57
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  𝐶  ≠  ∅ )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  ≠  ∅ )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 60 | 
							
								13 59
							 | 
							pm2.61dane | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  𝐶  ∈  V )  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							an32s | 
							⊢ ( ( ( 𝐴  ≼  𝐵  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  ∧  𝐶  ∈  V )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							ex | 
							⊢ ( ( 𝐴  ≼  𝐵  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐶  ∈  V  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							reldmmap | 
							⊢ Rel  dom   ↑m   | 
						
						
							| 64 | 
							
								63
							 | 
							ovprc1 | 
							⊢ ( ¬  𝐶  ∈  V  →  ( 𝐶  ↑m  𝐴 )  =  ∅ )  | 
						
						
							| 65 | 
							
								64 12
							 | 
							eqbrtrdi | 
							⊢ ( ¬  𝐶  ∈  V  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							pm2.61d1 | 
							⊢ ( ( 𝐴  ≼  𝐵  ∧  ¬  ( 𝐴  =  ∅  ∧  𝐶  =  ∅ ) )  →  ( 𝐶  ↑m  𝐴 )  ≼  ( 𝐶  ↑m  𝐵 ) )  |