Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
4 |
2 3
|
mapsnend |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ↑m { 𝑥 } ) ≈ 𝐴 ) |
5 |
4
|
ensymd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≈ ( 𝐴 ↑m { 𝑥 } ) ) |
6 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ 𝑊 ) |
7 |
3
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
8 |
|
ssdomg |
⊢ ( 𝐵 ∈ 𝑊 → ( { 𝑥 } ⊆ 𝐵 → { 𝑥 } ≼ 𝐵 ) ) |
9 |
6 7 8
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ≼ 𝐵 ) |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
10
|
snnz |
⊢ { 𝑥 } ≠ ∅ |
12 |
|
simpl |
⊢ ( ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) → { 𝑥 } = ∅ ) |
13 |
12
|
necon3ai |
⊢ ( { 𝑥 } ≠ ∅ → ¬ ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) ) |
14 |
11 13
|
ax-mp |
⊢ ¬ ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) |
15 |
|
mapdom2 |
⊢ ( ( { 𝑥 } ≼ 𝐵 ∧ ¬ ( { 𝑥 } = ∅ ∧ 𝐴 = ∅ ) ) → ( 𝐴 ↑m { 𝑥 } ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
16 |
9 14 15
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ↑m { 𝑥 } ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
17 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( 𝐴 ↑m { 𝑥 } ) ∧ ( 𝐴 ↑m { 𝑥 } ) ≼ ( 𝐴 ↑m 𝐵 ) ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
18 |
5 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
19 |
18
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
20 |
19
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
21 |
1 20
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ ∅ → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |