Metamath Proof Explorer


Theorem mapex

Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of Kunen p. 31. (Contributed by Raph Levien, 4-Dec-2003)

Ref Expression
Assertion mapex ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )

Proof

Step Hyp Ref Expression
1 fssxp ( 𝑓 : 𝐴𝐵𝑓 ⊆ ( 𝐴 × 𝐵 ) )
2 1 ss2abi { 𝑓𝑓 : 𝐴𝐵 } ⊆ { 𝑓𝑓 ⊆ ( 𝐴 × 𝐵 ) }
3 df-pw 𝒫 ( 𝐴 × 𝐵 ) = { 𝑓𝑓 ⊆ ( 𝐴 × 𝐵 ) }
4 2 3 sseqtrri { 𝑓𝑓 : 𝐴𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 )
5 xpexg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 × 𝐵 ) ∈ V )
6 5 pwexd ( ( 𝐴𝐶𝐵𝐷 ) → 𝒫 ( 𝐴 × 𝐵 ) ∈ V )
7 ssexg ( ( { 𝑓𝑓 : 𝐴𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )
8 4 6 7 sylancr ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓𝑓 : 𝐴𝐵 } ∈ V )