Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of Kunen p. 31. (Contributed by Raph Levien, 4-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | mapex | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) | |
2 | 1 | ss2abi | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 ⊆ ( 𝐴 × 𝐵 ) } |
3 | df-pw | ⊢ 𝒫 ( 𝐴 × 𝐵 ) = { 𝑓 ∣ 𝑓 ⊆ ( 𝐴 × 𝐵 ) } | |
4 | 2 3 | sseqtrri | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 ) |
5 | xpexg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
6 | 5 | pwexd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) |
7 | ssexg | ⊢ ( ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |