Description: Obsolete version of mapex as of 17-Jun-2025. (Contributed by Raph Levien, 4-Dec-2003) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapexOLD | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fssxp | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) | |
| 2 | 1 | ss2abi | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 ⊆ ( 𝐴 × 𝐵 ) } | 
| 3 | df-pw | ⊢ 𝒫 ( 𝐴 × 𝐵 ) = { 𝑓 ∣ 𝑓 ⊆ ( 𝐴 × 𝐵 ) } | |
| 4 | 2 3 | sseqtrri | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 ) | 
| 5 | xpexg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 6 | 5 | pwexd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) | 
| 7 | ssexg | ⊢ ( ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |