| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapfien.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
| 2 |
|
mapfien.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
| 3 |
|
mapfien.w |
⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) |
| 4 |
|
mapfien.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
| 5 |
|
mapfien.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
| 6 |
|
mapfien.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 7 |
|
mapfien.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 8 |
|
mapfien.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 9 |
|
mapfien.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
| 10 |
|
mapfien.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 11 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 12 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |
| 15 |
|
breq1 |
⊢ ( 𝑥 = 𝑓 → ( 𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍 ) ) |
| 16 |
15 1
|
elrab2 |
⊢ ( 𝑓 ∈ 𝑆 ↔ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑓 finSupp 𝑍 ) ) |
| 17 |
16
|
simplbi |
⊢ ( 𝑓 ∈ 𝑆 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 19 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 21 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐹 : 𝐶 ⟶ 𝐴 ) |
| 24 |
20 23
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 25 |
14 24
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) |
| 26 |
9 8
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) ) |
| 28 |
25 27
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 29 |
1 2 3 4 5 6 7 8 9 10
|
mapfienlem1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) |
| 30 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) → ( 𝑥 finSupp 𝑊 ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) ) |
| 31 |
30 2
|
elrab2 |
⊢ ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ 𝑇 ↔ ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ∧ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) ) |
| 32 |
28 29 31
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ 𝑇 ) |
| 33 |
1 2 3 4 5 6 7 8 9 10
|
mapfienlem3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ) |
| 34 |
|
coass |
⊢ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) |
| 35 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
| 36 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐶 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐶 ) ) |
| 38 |
37
|
coeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) ) |
| 39 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 40 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 41 |
5 39 40
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ 𝑇 ) |
| 44 |
|
breq1 |
⊢ ( 𝑥 = 𝑔 → ( 𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊 ) ) |
| 45 |
44 2
|
elrab2 |
⊢ ( 𝑔 ∈ 𝑇 ↔ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
| 46 |
43 45
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
| 47 |
46
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
| 48 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 50 |
42 49
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 51 |
50
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
| 52 |
|
fcoi1 |
⊢ ( ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 54 |
38 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 55 |
34 54
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 56 |
55
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) ) |
| 57 |
|
coass |
⊢ ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 58 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
| 59 |
|
f1ococnv1 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 61 |
60
|
coeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 62 |
24
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 63 |
|
fcoi2 |
⊢ ( ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 65 |
61 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 66 |
57 65
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∘ 𝐹 ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ ( ◡ 𝐺 ∘ 𝑔 ) = ( 𝑓 ∘ 𝐹 ) ) ) |
| 68 |
|
eqcom |
⊢ ( ( ◡ 𝐺 ∘ 𝑔 ) = ( 𝑓 ∘ 𝐹 ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
| 69 |
67 68
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) ) |
| 70 |
56 69
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) ) |
| 71 |
|
f1ofo |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –onto→ 𝐴 ) |
| 72 |
35 71
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 : 𝐶 –onto→ 𝐴 ) |
| 73 |
|
ffn |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) |
| 74 |
18 19 73
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 Fn 𝐴 ) |
| 75 |
74
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑓 Fn 𝐴 ) |
| 76 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
| 77 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 78 |
4 76 77
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 80 |
50 79
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 81 |
80
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) |
| 82 |
81
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) |
| 83 |
|
cocan2 |
⊢ ( ( 𝐹 : 𝐶 –onto→ 𝐴 ∧ 𝑓 Fn 𝐴 ∧ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ) ) |
| 84 |
72 75 82 83
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ) ) |
| 85 |
5 39
|
syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
| 87 |
|
f1of1 |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ) |
| 88 |
86 87
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ) |
| 89 |
49
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
| 90 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) |
| 91 |
|
cocan1 |
⊢ ( ( ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ∧ 𝑔 : 𝐶 ⟶ 𝐷 ∧ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
| 92 |
88 89 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
| 93 |
70 84 92
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
| 94 |
11 32 33 93
|
f1o2d |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑆 –1-1-onto→ 𝑇 ) |