Step |
Hyp |
Ref |
Expression |
1 |
|
mapfien.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
2 |
|
mapfien.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
3 |
|
mapfien.w |
⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) |
4 |
|
mapfien.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
5 |
|
mapfien.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
6 |
|
mapfien.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
mapfien.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
8 |
|
mapfien.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
9 |
|
mapfien.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
10 |
|
mapfien.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
12 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝑓 → ( 𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍 ) ) |
16 |
15 1
|
elrab2 |
⊢ ( 𝑓 ∈ 𝑆 ↔ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑓 finSupp 𝑍 ) ) |
17 |
16
|
simplbi |
⊢ ( 𝑓 ∈ 𝑆 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
19 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
21 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐹 : 𝐶 ⟶ 𝐴 ) |
24 |
20 23
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
25 |
14 24
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) |
26 |
9 8
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) ) |
28 |
25 27
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
mapfienlem1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) |
30 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) → ( 𝑥 finSupp 𝑊 ↔ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) ) |
31 |
30 2
|
elrab2 |
⊢ ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ 𝑇 ↔ ( ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ ( 𝐷 ↑m 𝐶 ) ∧ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) ) |
32 |
28 29 31
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ∈ 𝑇 ) |
33 |
1 2 3 4 5 6 7 8 9 10
|
mapfienlem3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ) |
34 |
|
coass |
⊢ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) |
35 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
36 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐶 ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐶 ) ) |
38 |
37
|
coeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) ) |
39 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
40 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
41 |
5 39 40
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ 𝑇 ) |
44 |
|
breq1 |
⊢ ( 𝑥 = 𝑔 → ( 𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊 ) ) |
45 |
44 2
|
elrab2 |
⊢ ( 𝑔 ∈ 𝑇 ↔ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
46 |
43 45
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
47 |
46
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
48 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
50 |
42 49
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
51 |
50
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
52 |
|
fcoi1 |
⊢ ( ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( I ↾ 𝐶 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
54 |
38 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
55 |
34 54
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
56 |
55
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) ) |
57 |
|
coass |
⊢ ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
58 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
59 |
|
f1ococnv1 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
61 |
60
|
coeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
62 |
24
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
63 |
|
fcoi2 |
⊢ ( ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( I ↾ 𝐵 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
65 |
61 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝐺 ) ∘ ( 𝑓 ∘ 𝐹 ) ) = ( 𝑓 ∘ 𝐹 ) ) |
66 |
57 65
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) = ( 𝑓 ∘ 𝐹 ) ) |
67 |
66
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ ( ◡ 𝐺 ∘ 𝑔 ) = ( 𝑓 ∘ 𝐹 ) ) ) |
68 |
|
eqcom |
⊢ ( ( ◡ 𝐺 ∘ 𝑔 ) = ( 𝑓 ∘ 𝐹 ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) |
69 |
67 68
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ ( 𝑓 ∘ 𝐹 ) = ( ◡ 𝐺 ∘ 𝑔 ) ) ) |
70 |
56 69
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) ) |
71 |
|
f1ofo |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –onto→ 𝐴 ) |
72 |
35 71
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 : 𝐶 –onto→ 𝐴 ) |
73 |
|
ffn |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) |
74 |
18 19 73
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 Fn 𝐴 ) |
75 |
74
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑓 Fn 𝐴 ) |
76 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
77 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
78 |
4 76 77
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
80 |
50 79
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
81 |
80
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) |
82 |
81
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) |
83 |
|
cocan2 |
⊢ ( ( 𝐹 : 𝐶 –onto→ 𝐴 ∧ 𝑓 Fn 𝐴 ∧ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) Fn 𝐴 ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ) ) |
84 |
72 75 82 83
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∘ 𝐹 ) ↔ 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ) ) |
85 |
5 39
|
syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
87 |
|
f1of1 |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ) |
88 |
86 87
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ) |
89 |
49
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
90 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) |
91 |
|
cocan1 |
⊢ ( ( ◡ 𝐺 : 𝐷 –1-1→ 𝐵 ∧ 𝑔 : 𝐶 ⟶ 𝐷 ∧ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) : 𝐶 ⟶ 𝐷 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
92 |
88 89 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( ( ◡ 𝐺 ∘ 𝑔 ) = ( ◡ 𝐺 ∘ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
93 |
70 84 92
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑓 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ↔ 𝑔 = ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) ) |
94 |
11 32 33 93
|
f1o2d |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑆 ↦ ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) ) : 𝑆 –1-1-onto→ 𝑇 ) |