Step |
Hyp |
Ref |
Expression |
1 |
|
mapfien2.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 0 } |
2 |
|
mapfien2.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
3 |
|
mapfien2.ac |
⊢ ( 𝜑 → 𝐴 ≈ 𝐶 ) |
4 |
|
mapfien2.bd |
⊢ ( 𝜑 → 𝐵 ≈ 𝐷 ) |
5 |
|
mapfien2.z |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
6 |
|
mapfien2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐷 ) |
7 |
|
enfixsn |
⊢ ( ( 0 ∈ 𝐵 ∧ 𝑊 ∈ 𝐷 ∧ 𝐵 ≈ 𝐷 ) → ∃ 𝑦 ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) |
8 |
5 6 4 7
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) |
9 |
|
bren |
⊢ ( 𝐴 ≈ 𝐶 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝐶 ) |
10 |
3 9
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝐶 ) |
11 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } |
12 |
|
eqid |
⊢ ( 𝑦 ‘ 0 ) = ( 𝑦 ‘ 0 ) |
13 |
|
f1ocnv |
⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝑧 : 𝐶 –1-1-onto→ 𝐴 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ◡ 𝑧 : 𝐶 –1-1-onto→ 𝐴 ) |
15 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) |
16 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐴 ≈ 𝐶 ) |
17 |
|
relen |
⊢ Rel ≈ |
18 |
17
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐶 → 𝐴 ∈ V ) |
19 |
16 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐴 ∈ V ) |
20 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐵 ≈ 𝐷 ) |
21 |
17
|
brrelex1i |
⊢ ( 𝐵 ≈ 𝐷 → 𝐵 ∈ V ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐵 ∈ V ) |
23 |
17
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐶 → 𝐶 ∈ V ) |
24 |
16 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐶 ∈ V ) |
25 |
17
|
brrelex2i |
⊢ ( 𝐵 ≈ 𝐷 → 𝐷 ∈ V ) |
26 |
20 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝐷 ∈ V ) |
27 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 0 ∈ 𝐵 ) |
28 |
1 11 12 14 15 19 22 24 26 27
|
mapfien |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → ( 𝑤 ∈ 𝑆 ↦ ( 𝑦 ∘ ( 𝑤 ∘ ◡ 𝑧 ) ) ) : 𝑆 –1-1-onto→ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
29 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐴 ) ∈ V |
30 |
1 29
|
rabex2 |
⊢ 𝑆 ∈ V |
31 |
30
|
f1oen |
⊢ ( ( 𝑤 ∈ 𝑆 ↦ ( 𝑦 ∘ ( 𝑤 ∘ ◡ 𝑧 ) ) ) : 𝑆 –1-1-onto→ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } → 𝑆 ≈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
32 |
28 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝑦 : 𝐵 –1-1-onto→ 𝐷 ) → 𝑆 ≈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
33 |
32
|
3adant3r |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) → 𝑆 ≈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } ) |
34 |
|
breq2 |
⊢ ( ( 𝑦 ‘ 0 ) = 𝑊 → ( 𝑥 finSupp ( 𝑦 ‘ 0 ) ↔ 𝑥 finSupp 𝑊 ) ) |
35 |
34
|
rabbidv |
⊢ ( ( 𝑦 ‘ 0 ) = 𝑊 → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } ) |
36 |
35 2
|
eqtr4di |
⊢ ( ( 𝑦 ‘ 0 ) = 𝑊 → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = 𝑇 ) |
37 |
36
|
adantl |
⊢ ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = 𝑇 ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) → { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp ( 𝑦 ‘ 0 ) } = 𝑇 ) |
39 |
33 38
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 : 𝐴 –1-1-onto→ 𝐶 ∧ ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) ) → 𝑆 ≈ 𝑇 ) |
40 |
39
|
3exp |
⊢ ( 𝜑 → ( 𝑧 : 𝐴 –1-1-onto→ 𝐶 → ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) ) |
41 |
40
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝐶 → ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) ) |
42 |
10 41
|
mpd |
⊢ ( 𝜑 → ( ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) |
43 |
42
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 : 𝐵 –1-1-onto→ 𝐷 ∧ ( 𝑦 ‘ 0 ) = 𝑊 ) → 𝑆 ≈ 𝑇 ) ) |
44 |
8 43
|
mpd |
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |