Step |
Hyp |
Ref |
Expression |
1 |
|
mapfien.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
2 |
|
mapfien.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
3 |
|
mapfien.w |
⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) |
4 |
|
mapfien.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
5 |
|
mapfien.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
6 |
|
mapfien.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
mapfien.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
8 |
|
mapfien.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
9 |
|
mapfien.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
10 |
|
mapfien.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
11 |
3
|
fvexi |
⊢ 𝑊 ∈ V |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑊 ∈ V ) |
13 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑍 ∈ 𝐵 ) |
14 |
|
elrabi |
⊢ ( 𝑓 ∈ { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
15 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
16 |
14 15
|
syl |
⊢ ( 𝑓 ∈ { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } → 𝑓 : 𝐴 ⟶ 𝐵 ) |
17 |
16 1
|
eleq2s |
⊢ ( 𝑓 ∈ 𝑆 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
18 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
20 |
|
fco |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : 𝐶 ⟶ 𝐴 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
21 |
17 19 20
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
22 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
23 |
5 22
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐺 : 𝐵 ⟶ 𝐷 ) |
25 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐵 ⊆ 𝐵 ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐶 ∈ 𝑋 ) |
27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
28 |
|
breq1 |
⊢ ( 𝑥 = 𝑓 → ( 𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍 ) ) |
29 |
28 1
|
elrab2 |
⊢ ( 𝑓 ∈ 𝑆 ↔ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑓 finSupp 𝑍 ) ) |
30 |
29
|
simprbi |
⊢ ( 𝑓 ∈ 𝑆 → 𝑓 finSupp 𝑍 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 finSupp 𝑍 ) |
32 |
|
f1of1 |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
33 |
4 32
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → 𝑓 ∈ 𝑆 ) |
36 |
31 34 13 35
|
fsuppco |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝑓 ∘ 𝐹 ) finSupp 𝑍 ) |
37 |
3
|
eqcomi |
⊢ ( 𝐺 ‘ 𝑍 ) = 𝑊 |
38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑍 ) = 𝑊 ) |
39 |
12 13 21 24 25 26 27 36 38
|
fsuppcor |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ( 𝐺 ∘ ( 𝑓 ∘ 𝐹 ) ) finSupp 𝑊 ) |