| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapfien.s | ⊢ 𝑆  =  { 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ∣  𝑥  finSupp  𝑍 } | 
						
							| 2 |  | mapfien.t | ⊢ 𝑇  =  { 𝑥  ∈  ( 𝐷  ↑m  𝐶 )  ∣  𝑥  finSupp  𝑊 } | 
						
							| 3 |  | mapfien.w | ⊢ 𝑊  =  ( 𝐺 ‘ 𝑍 ) | 
						
							| 4 |  | mapfien.f | ⊢ ( 𝜑  →  𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | 
						
							| 5 |  | mapfien.g | ⊢ ( 𝜑  →  𝐺 : 𝐵 –1-1-onto→ 𝐷 ) | 
						
							| 6 |  | mapfien.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 7 |  | mapfien.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 8 |  | mapfien.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 9 |  | mapfien.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑌 ) | 
						
							| 10 |  | mapfien.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝑍  ∈  𝐵 ) | 
						
							| 12 |  | f1of | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  →  𝐺 : 𝐵 ⟶ 𝐷 ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐷 ) | 
						
							| 14 | 13 10 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑍 )  ∈  𝐷 ) | 
						
							| 15 | 3 14 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  𝐷 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝑊  ∈  𝐷 ) | 
						
							| 17 |  | elrabi | ⊢ ( 𝑔  ∈  { 𝑥  ∈  ( 𝐷  ↑m  𝐶 )  ∣  𝑥  finSupp  𝑊 }  →  𝑔  ∈  ( 𝐷  ↑m  𝐶 ) ) | 
						
							| 18 |  | elmapi | ⊢ ( 𝑔  ∈  ( 𝐷  ↑m  𝐶 )  →  𝑔 : 𝐶 ⟶ 𝐷 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑔  ∈  { 𝑥  ∈  ( 𝐷  ↑m  𝐶 )  ∣  𝑥  finSupp  𝑊 }  →  𝑔 : 𝐶 ⟶ 𝐷 ) | 
						
							| 20 | 19 2 | eleq2s | ⊢ ( 𝑔  ∈  𝑇  →  𝑔 : 𝐶 ⟶ 𝐷 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝑔 : 𝐶 ⟶ 𝐷 ) | 
						
							| 22 |  | f1ocnv | ⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  →  ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) | 
						
							| 23 |  | f1of | ⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵  →  ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) | 
						
							| 24 | 5 22 23 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) | 
						
							| 26 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝐷  ⊆  𝐷 ) | 
						
							| 27 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝐶  ∈  𝑋 ) | 
						
							| 28 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝐷  ∈  𝑌 ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑥  =  𝑔  →  ( 𝑥  finSupp  𝑊  ↔  𝑔  finSupp  𝑊 ) ) | 
						
							| 30 | 29 | elrab | ⊢ ( 𝑔  ∈  { 𝑥  ∈  ( 𝐷  ↑m  𝐶 )  ∣  𝑥  finSupp  𝑊 }  ↔  ( 𝑔  ∈  ( 𝐷  ↑m  𝐶 )  ∧  𝑔  finSupp  𝑊 ) ) | 
						
							| 31 | 30 | simprbi | ⊢ ( 𝑔  ∈  { 𝑥  ∈  ( 𝐷  ↑m  𝐶 )  ∣  𝑥  finSupp  𝑊 }  →  𝑔  finSupp  𝑊 ) | 
						
							| 32 | 31 2 | eleq2s | ⊢ ( 𝑔  ∈  𝑇  →  𝑔  finSupp  𝑊 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  𝑔  finSupp  𝑊 ) | 
						
							| 34 | 5 10 | jca | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  ∧  𝑍  ∈  𝐵 ) ) | 
						
							| 35 | 3 | eqcomi | ⊢ ( 𝐺 ‘ 𝑍 )  =  𝑊 | 
						
							| 36 | 34 35 | jctir | ⊢ ( 𝜑  →  ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝐺 ‘ 𝑍 )  =  𝑊 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝐺 ‘ 𝑍 )  =  𝑊 ) ) | 
						
							| 38 |  | f1ocnvfv | ⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝐺 ‘ 𝑍 )  =  𝑊  →  ( ◡ 𝐺 ‘ 𝑊 )  =  𝑍 ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷  ∧  𝑍  ∈  𝐵 )  ∧  ( 𝐺 ‘ 𝑍 )  =  𝑊 )  →  ( ◡ 𝐺 ‘ 𝑊 )  =  𝑍 ) | 
						
							| 40 | 37 39 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ( ◡ 𝐺 ‘ 𝑊 )  =  𝑍 ) | 
						
							| 41 | 11 16 21 25 26 27 28 33 40 | fsuppcor | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ( ◡ 𝐺  ∘  𝑔 )  finSupp  𝑍 ) | 
						
							| 42 |  | f1ocnv | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴  →  ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) | 
						
							| 43 |  | f1of1 | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶  →  ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) | 
						
							| 44 | 4 42 43 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) | 
						
							| 46 | 13 7 | jca | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐷  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 47 |  | fex | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐷  ∧  𝐵  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 48 |  | cnvexg | ⊢ ( 𝐺  ∈  V  →  ◡ 𝐺  ∈  V ) | 
						
							| 49 | 46 47 48 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐺  ∈  V ) | 
						
							| 50 |  | coexg | ⊢ ( ( ◡ 𝐺  ∈  V  ∧  𝑔  ∈  𝑇 )  →  ( ◡ 𝐺  ∘  𝑔 )  ∈  V ) | 
						
							| 51 | 49 50 | sylan | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ( ◡ 𝐺  ∘  𝑔 )  ∈  V ) | 
						
							| 52 | 41 45 11 51 | fsuppco | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑇 )  →  ( ( ◡ 𝐺  ∘  𝑔 )  ∘  ◡ 𝐹 )  finSupp  𝑍 ) |