Step |
Hyp |
Ref |
Expression |
1 |
|
mapfien.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
2 |
|
mapfien.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
3 |
|
mapfien.w |
⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) |
4 |
|
mapfien.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
5 |
|
mapfien.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
6 |
|
mapfien.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
mapfien.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
8 |
|
mapfien.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
9 |
|
mapfien.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
10 |
|
mapfien.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑍 ∈ 𝐵 ) |
12 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) |
14 |
13 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) ∈ 𝐷 ) |
15 |
3 14
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ 𝐷 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑊 ∈ 𝐷 ) |
17 |
|
elrabi |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
18 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
19 |
17 18
|
syl |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 : 𝐶 ⟶ 𝐷 ) |
20 |
19 2
|
eleq2s |
⊢ ( 𝑔 ∈ 𝑇 → 𝑔 : 𝐶 ⟶ 𝐷 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
22 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
23 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
24 |
5 22 23
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
26 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐷 ⊆ 𝐷 ) |
27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐶 ∈ 𝑋 ) |
28 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝐷 ∈ 𝑌 ) |
29 |
|
breq1 |
⊢ ( 𝑥 = 𝑔 → ( 𝑥 finSupp 𝑊 ↔ 𝑔 finSupp 𝑊 ) ) |
30 |
29
|
elrab |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } ↔ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ∧ 𝑔 finSupp 𝑊 ) ) |
31 |
30
|
simprbi |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 finSupp 𝑊 ) |
32 |
31 2
|
eleq2s |
⊢ ( 𝑔 ∈ 𝑇 → 𝑔 finSupp 𝑊 ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 finSupp 𝑊 ) |
34 |
5 10
|
jca |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ) |
35 |
3
|
eqcomi |
⊢ ( 𝐺 ‘ 𝑍 ) = 𝑊 |
36 |
34 35
|
jctir |
⊢ ( 𝜑 → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) ) |
38 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑍 ) = 𝑊 → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) ) |
39 |
38
|
imp |
⊢ ( ( ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐺 ‘ 𝑍 ) = 𝑊 ) → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) |
40 |
37 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ‘ 𝑊 ) = 𝑍 ) |
41 |
11 16 21 25 26 27 28 33 40
|
fsuppcor |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) finSupp 𝑍 ) |
42 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
43 |
|
f1of1 |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
44 |
4 42 43
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 –1-1→ 𝐶 ) |
46 |
13 7
|
jca |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐷 ∧ 𝐵 ∈ 𝑉 ) ) |
47 |
|
fex |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐷 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
48 |
|
cnvexg |
⊢ ( 𝐺 ∈ V → ◡ 𝐺 ∈ V ) |
49 |
46 47 48
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 ∈ V ) |
50 |
|
coexg |
⊢ ( ( ◡ 𝐺 ∈ V ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) ∈ V ) |
51 |
49 50
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) ∈ V ) |
52 |
41 45 11 51
|
fsuppco |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) |