Step |
Hyp |
Ref |
Expression |
1 |
|
mapfien.s |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
2 |
|
mapfien.t |
⊢ 𝑇 = { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } |
3 |
|
mapfien.w |
⊢ 𝑊 = ( 𝐺 ‘ 𝑍 ) |
4 |
|
mapfien.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
5 |
|
mapfien.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐷 ) |
6 |
|
mapfien.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
mapfien.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
8 |
|
mapfien.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
9 |
|
mapfien.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
10 |
|
mapfien.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
11 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 ) |
12 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
13 |
5 11 12
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐺 : 𝐷 ⟶ 𝐵 ) |
15 |
|
elrabi |
⊢ ( 𝑔 ∈ { 𝑥 ∈ ( 𝐷 ↑m 𝐶 ) ∣ 𝑥 finSupp 𝑊 } → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
16 |
15 2
|
eleq2s |
⊢ ( 𝑔 ∈ 𝑇 → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) ) |
18 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m 𝐶 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → 𝑔 : 𝐶 ⟶ 𝐷 ) |
20 |
14 19
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ◡ 𝐺 ∘ 𝑔 ) : 𝐶 ⟶ 𝐵 ) |
21 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
22 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
23 |
4 21 22
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ◡ 𝐹 : 𝐴 ⟶ 𝐶 ) |
25 |
20 24
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
26 |
7 6
|
elmapd |
⊢ ( 𝜑 → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) : 𝐴 ⟶ 𝐵 ) ) |
28 |
25 27
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
mapfienlem2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) |
30 |
|
breq1 |
⊢ ( 𝑥 = ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) → ( 𝑥 finSupp 𝑍 ↔ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) ) |
31 |
30 1
|
elrab2 |
⊢ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ↔ ( ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ ( 𝐵 ↑m 𝐴 ) ∧ ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) finSupp 𝑍 ) ) |
32 |
28 29 31
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ◡ 𝐺 ∘ 𝑔 ) ∘ ◡ 𝐹 ) ∈ 𝑆 ) |