Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑚 ∈ V |
2 |
|
foeq1 |
⊢ ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴 –onto→ 𝐵 ↔ 𝑚 : 𝐴 –onto→ 𝐵 ) ) |
3 |
1 2
|
elab |
⊢ ( 𝑚 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } ↔ 𝑚 : 𝐴 –onto→ 𝐵 ) |
4 |
|
fof |
⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝑚 : 𝐴 ⟶ 𝐵 ) |
5 |
|
forn |
⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → ran 𝑚 = 𝐵 ) |
6 |
1
|
rnex |
⊢ ran 𝑚 ∈ V |
7 |
5 6
|
eqeltrrdi |
⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) |
8 |
|
dmfex |
⊢ ( ( 𝑚 ∈ V ∧ 𝑚 : 𝐴 ⟶ 𝐵 ) → 𝐴 ∈ V ) |
9 |
1 4 8
|
sylancr |
⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝐴 ∈ V ) |
10 |
7 9
|
elmapd |
⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → ( 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑚 : 𝐴 ⟶ 𝐵 ) ) |
11 |
4 10
|
mpbird |
⊢ ( 𝑚 : 𝐴 –onto→ 𝐵 → 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) |
12 |
3 11
|
sylbi |
⊢ ( 𝑚 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } → 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) |
13 |
12
|
ssriv |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐵 } ⊆ ( 𝐵 ↑m 𝐴 ) |