| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							⊢ 𝑚  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							foeq1 | 
							⊢ ( 𝑓  =  𝑚  →  ( 𝑓 : 𝐴 –onto→ 𝐵  ↔  𝑚 : 𝐴 –onto→ 𝐵 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							elab | 
							⊢ ( 𝑚  ∈  { 𝑓  ∣  𝑓 : 𝐴 –onto→ 𝐵 }  ↔  𝑚 : 𝐴 –onto→ 𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							fof | 
							⊢ ( 𝑚 : 𝐴 –onto→ 𝐵  →  𝑚 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							forn | 
							⊢ ( 𝑚 : 𝐴 –onto→ 𝐵  →  ran  𝑚  =  𝐵 )  | 
						
						
							| 6 | 
							
								1
							 | 
							rnex | 
							⊢ ran  𝑚  ∈  V  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeltrrdi | 
							⊢ ( 𝑚 : 𝐴 –onto→ 𝐵  →  𝐵  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							dmfex | 
							⊢ ( ( 𝑚  ∈  V  ∧  𝑚 : 𝐴 ⟶ 𝐵 )  →  𝐴  ∈  V )  | 
						
						
							| 9 | 
							
								1 4 8
							 | 
							sylancr | 
							⊢ ( 𝑚 : 𝐴 –onto→ 𝐵  →  𝐴  ∈  V )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							elmapd | 
							⊢ ( 𝑚 : 𝐴 –onto→ 𝐵  →  ( 𝑚  ∈  ( 𝐵  ↑m  𝐴 )  ↔  𝑚 : 𝐴 ⟶ 𝐵 ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							mpbird | 
							⊢ ( 𝑚 : 𝐴 –onto→ 𝐵  →  𝑚  ∈  ( 𝐵  ↑m  𝐴 ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							sylbi | 
							⊢ ( 𝑚  ∈  { 𝑓  ∣  𝑓 : 𝐴 –onto→ 𝐵 }  →  𝑚  ∈  ( 𝐵  ↑m  𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ssriv | 
							⊢ { 𝑓  ∣  𝑓 : 𝐴 –onto→ 𝐵 }  ⊆  ( 𝐵  ↑m  𝐴 )  |