Metamath Proof Explorer


Theorem mapfoss

Description: The value of the set exponentiation ( B ^m A ) is a superset of the set of all functions from A onto B . (Contributed by AV, 7-Aug-2024)

Ref Expression
Assertion mapfoss { 𝑓𝑓 : 𝐴onto𝐵 } ⊆ ( 𝐵m 𝐴 )

Proof

Step Hyp Ref Expression
1 vex 𝑚 ∈ V
2 foeq1 ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴onto𝐵𝑚 : 𝐴onto𝐵 ) )
3 1 2 elab ( 𝑚 ∈ { 𝑓𝑓 : 𝐴onto𝐵 } ↔ 𝑚 : 𝐴onto𝐵 )
4 fof ( 𝑚 : 𝐴onto𝐵𝑚 : 𝐴𝐵 )
5 forn ( 𝑚 : 𝐴onto𝐵 → ran 𝑚 = 𝐵 )
6 1 rnex ran 𝑚 ∈ V
7 5 6 eqeltrrdi ( 𝑚 : 𝐴onto𝐵𝐵 ∈ V )
8 dmfex ( ( 𝑚 ∈ V ∧ 𝑚 : 𝐴𝐵 ) → 𝐴 ∈ V )
9 1 4 8 sylancr ( 𝑚 : 𝐴onto𝐵𝐴 ∈ V )
10 7 9 elmapd ( 𝑚 : 𝐴onto𝐵 → ( 𝑚 ∈ ( 𝐵m 𝐴 ) ↔ 𝑚 : 𝐴𝐵 ) )
11 4 10 mpbird ( 𝑚 : 𝐴onto𝐵𝑚 ∈ ( 𝐵m 𝐴 ) )
12 3 11 sylbi ( 𝑚 ∈ { 𝑓𝑓 : 𝐴onto𝐵 } → 𝑚 ∈ ( 𝐵m 𝐴 ) )
13 12 ssriv { 𝑓𝑓 : 𝐴onto𝐵 } ⊆ ( 𝐵m 𝐴 )