Metamath Proof Explorer


Theorem mapfset

Description: If B is a set, the value of the set exponentiation ( B ^m A ) is the class of all functions from A to B . Generalisation of mapvalg (which does not require ax-rep ) to arbitrary domains. Note that the class { f | f : A --> B } can only contain set-functions, as opposed to arbitrary class-functions. When A is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 ), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024)

Ref Expression
Assertion mapfset ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴𝐵 } = ( 𝐵m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑚 ∈ V
2 feq1 ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴𝐵𝑚 : 𝐴𝐵 ) )
3 1 2 elab ( 𝑚 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↔ 𝑚 : 𝐴𝐵 )
4 simpr ( ( 𝑚 : 𝐴𝐵𝐵𝑉 ) → 𝐵𝑉 )
5 dmfex ( ( 𝑚 ∈ V ∧ 𝑚 : 𝐴𝐵 ) → 𝐴 ∈ V )
6 1 5 mpan ( 𝑚 : 𝐴𝐵𝐴 ∈ V )
7 6 adantr ( ( 𝑚 : 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
8 4 7 elmapd ( ( 𝑚 : 𝐴𝐵𝐵𝑉 ) → ( 𝑚 ∈ ( 𝐵m 𝐴 ) ↔ 𝑚 : 𝐴𝐵 ) )
9 8 exbiri ( 𝑚 : 𝐴𝐵 → ( 𝐵𝑉 → ( 𝑚 : 𝐴𝐵𝑚 ∈ ( 𝐵m 𝐴 ) ) ) )
10 9 pm2.43b ( 𝐵𝑉 → ( 𝑚 : 𝐴𝐵𝑚 ∈ ( 𝐵m 𝐴 ) ) )
11 elmapi ( 𝑚 ∈ ( 𝐵m 𝐴 ) → 𝑚 : 𝐴𝐵 )
12 10 11 impbid1 ( 𝐵𝑉 → ( 𝑚 : 𝐴𝐵𝑚 ∈ ( 𝐵m 𝐴 ) ) )
13 3 12 bitrid ( 𝐵𝑉 → ( 𝑚 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↔ 𝑚 ∈ ( 𝐵m 𝐴 ) ) )
14 13 eqrdv ( 𝐵𝑉 → { 𝑓𝑓 : 𝐴𝐵 } = ( 𝐵m 𝐴 ) )