Metamath Proof Explorer


Theorem mapfvd

Description: The value of a function that maps from B to A . (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses mapfvd.m 𝑀 = ( 𝐴m 𝐵 )
mapfvd.f ( 𝜑𝐹𝑀 )
mapfvd.x ( 𝜑𝑋𝐵 )
Assertion mapfvd ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 mapfvd.m 𝑀 = ( 𝐴m 𝐵 )
2 mapfvd.f ( 𝜑𝐹𝑀 )
3 mapfvd.x ( 𝜑𝑋𝐵 )
4 elmapi ( 𝐹 ∈ ( 𝐴m 𝐵 ) → 𝐹 : 𝐵𝐴 )
5 ffvelrn ( ( 𝐹 : 𝐵𝐴𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐴 )
6 5 expcom ( 𝑋𝐵 → ( 𝐹 : 𝐵𝐴 → ( 𝐹𝑋 ) ∈ 𝐴 ) )
7 3 4 6 syl2imc ( 𝐹 ∈ ( 𝐴m 𝐵 ) → ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐴 ) )
8 7 1 eleq2s ( 𝐹𝑀 → ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐴 ) )
9 2 8 mpcom ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐴 )