Description: When A is a proper class, the class of all functions mapping A to B is empty. Exercise 4.41 of Mendelson p. 255. (Contributed by NM, 8-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | mapprc | ⊢ ( ¬ 𝐴 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ≠ ∅ ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
2 | fdm | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → dom 𝑓 = 𝐴 ) | |
3 | vex | ⊢ 𝑓 ∈ V | |
4 | 3 | dmex | ⊢ dom 𝑓 ∈ V |
5 | 2 4 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
7 | 1 6 | sylbi | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ≠ ∅ → 𝐴 ∈ V ) |
8 | 7 | necon1bi | ⊢ ( ¬ 𝐴 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ∅ ) |