Metamath Proof Explorer


Theorem mapprc

Description: When A is a proper class, the class of all functions mapping A to B is empty. Exercise 4.41 of Mendelson p. 255. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion mapprc ( ¬ 𝐴 ∈ V → { 𝑓𝑓 : 𝐴𝐵 } = ∅ )

Proof

Step Hyp Ref Expression
1 abn0 ( { 𝑓𝑓 : 𝐴𝐵 } ≠ ∅ ↔ ∃ 𝑓 𝑓 : 𝐴𝐵 )
2 fdm ( 𝑓 : 𝐴𝐵 → dom 𝑓 = 𝐴 )
3 vex 𝑓 ∈ V
4 3 dmex dom 𝑓 ∈ V
5 2 4 eqeltrrdi ( 𝑓 : 𝐴𝐵𝐴 ∈ V )
6 5 exlimiv ( ∃ 𝑓 𝑓 : 𝐴𝐵𝐴 ∈ V )
7 1 6 sylbi ( { 𝑓𝑓 : 𝐴𝐵 } ≠ ∅ → 𝐴 ∈ V )
8 7 necon1bi ( ¬ 𝐴 ∈ V → { 𝑓𝑓 : 𝐴𝐵 } = ∅ )