Metamath Proof Explorer


Theorem mappsrpr

Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis mappsrpr.2 𝐶R
Assertion mappsrpr ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) ↔ 𝐴P )

Proof

Step Hyp Ref Expression
1 mappsrpr.2 𝐶R
2 df-m1r -1R = [ ⟨ 1P , ( 1P +P 1P ) ⟩ ] ~R
3 2 breq1i ( -1R <R [ ⟨ 𝐴 , 1P ⟩ ] ~R ↔ [ ⟨ 1P , ( 1P +P 1P ) ⟩ ] ~R <R [ ⟨ 𝐴 , 1P ⟩ ] ~R )
4 ltsrpr ( [ ⟨ 1P , ( 1P +P 1P ) ⟩ ] ~R <R [ ⟨ 𝐴 , 1P ⟩ ] ~R ↔ ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) )
5 3 4 bitri ( -1R <R [ ⟨ 𝐴 , 1P ⟩ ] ~R ↔ ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) )
6 ltasr ( 𝐶R → ( -1R <R [ ⟨ 𝐴 , 1P ⟩ ] ~R ↔ ( 𝐶 +R -1R ) <R ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) ) )
7 1 6 ax-mp ( -1R <R [ ⟨ 𝐴 , 1P ⟩ ] ~R ↔ ( 𝐶 +R -1R ) <R ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) )
8 ltrelpr <P ⊆ ( P × P )
9 8 brel ( ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) → ( ( 1P +P 1P ) ∈ P ∧ ( ( 1P +P 1P ) +P 𝐴 ) ∈ P ) )
10 dmplp dom +P = ( P × P )
11 0npr ¬ ∅ ∈ P
12 10 11 ndmovrcl ( ( ( 1P +P 1P ) +P 𝐴 ) ∈ P → ( ( 1P +P 1P ) ∈ P𝐴P ) )
13 12 simprd ( ( ( 1P +P 1P ) +P 𝐴 ) ∈ P𝐴P )
14 9 13 simpl2im ( ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) → 𝐴P )
15 1pr 1PP
16 addclpr ( ( 1PP ∧ 1PP ) → ( 1P +P 1P ) ∈ P )
17 15 15 16 mp2an ( 1P +P 1P ) ∈ P
18 ltaddpr ( ( ( 1P +P 1P ) ∈ P𝐴P ) → ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) )
19 17 18 mpan ( 𝐴P → ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) )
20 14 19 impbii ( ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) ↔ 𝐴P )
21 5 7 20 3bitr3i ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) ↔ 𝐴P )