Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝐴 ≼ 𝒫 𝐵 ) |
2 |
|
pw2eng |
⊢ ( 𝐵 ∈ dom card → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
4 |
|
domentr |
⊢ ( ( 𝐴 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) → 𝐴 ≼ ( 2o ↑m 𝐵 ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝐴 ≼ ( 2o ↑m 𝐵 ) ) |
6 |
|
mapdom1 |
⊢ ( 𝐴 ≼ ( 2o ↑m 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≼ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≼ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ) |
8 |
|
2on |
⊢ 2o ∈ On |
9 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝐵 ∈ dom card ) |
10 |
|
mapxpen |
⊢ ( ( 2o ∈ On ∧ 𝐵 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ) |
11 |
8 9 9 10
|
mp3an2i |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ) |
12 |
8
|
elexi |
⊢ 2o ∈ V |
13 |
12
|
enref |
⊢ 2o ≈ 2o |
14 |
|
infxpidm2 |
⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) → ( 𝐵 × 𝐵 ) ≈ 𝐵 ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐵 × 𝐵 ) ≈ 𝐵 ) |
16 |
|
mapen |
⊢ ( ( 2o ≈ 2o ∧ ( 𝐵 × 𝐵 ) ≈ 𝐵 ) → ( 2o ↑m ( 𝐵 × 𝐵 ) ) ≈ ( 2o ↑m 𝐵 ) ) |
17 |
13 15 16
|
sylancr |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 2o ↑m ( 𝐵 × 𝐵 ) ) ≈ ( 2o ↑m 𝐵 ) ) |
18 |
|
entr |
⊢ ( ( ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ∧ ( 2o ↑m ( 𝐵 × 𝐵 ) ) ≈ ( 2o ↑m 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m 𝐵 ) ) |
19 |
11 17 18
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m 𝐵 ) ) |
20 |
3
|
ensymd |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
21 |
|
entr |
⊢ ( ( ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
23 |
|
domentr |
⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ∧ ( ( 2o ↑m 𝐵 ) ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
24 |
7 22 23
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ) |
25 |
|
mapdom1 |
⊢ ( 2o ≼ 𝐴 → ( 2o ↑m 𝐵 ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
26 |
25
|
ad2antrl |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 2o ↑m 𝐵 ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
27 |
|
endomtr |
⊢ ( ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≼ ( 𝐴 ↑m 𝐵 ) ) → 𝒫 𝐵 ≼ ( 𝐴 ↑m 𝐵 ) ) |
28 |
3 26 27
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → 𝒫 𝐵 ≼ ( 𝐴 ↑m 𝐵 ) ) |
29 |
|
sbth |
⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ ( 𝐴 ↑m 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
30 |
24 28 29
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |